LEADER 01280nam--2200409---450- 001 990001636040203316 005 20130521092039.0 010 $a978-88-459-2768-3 035 $a000163604 035 $aUSA01000163604 035 $a(ALEPH)000163604USA01 035 $a000163604 100 $a20040505d2013----km-y0itay50------ba 101 $aita 102 $aIT 105 $ay|||z|||001yy 200 1 $a<> aforismi di ?iva$fVasugupta$gcon il commento di K?emar?ja (?ivas?travimar?in?)$ga cura di Raffaele Torella 210 $aMilano$cAdelphi$d2013 215 $a323 p.$d18 cm 225 2 $aPiccola biblioteca Adelphi$v641 410 0$12001$aPiccola biblioteca Adelphi$v641 676 $a294.5513 700 0$aVASUGUPTA$0561393 702 0$aK?EMAR?JA 702 1$aTORELLA,$bRaffaele 801 0$aIT$bsalbc$gISBD 912 $a990001636040203316 951 $aII.2. 5983$b8642 L.G.$cII.2.$d00292573 959 $aBK 969 $aUMA 979 $aSIAVER$b90$c20040505$lUSA01$h1309 979 $aCOPAT3$b90$c20050623$lUSA01$h1320 979 $aANNAMARIA$b90$c20130521$lUSA01$h0914 979 $aANNAMARIA$b90$c20130521$lUSA01$h0918 979 $aANNAMARIA$b90$c20130521$lUSA01$h0920 996 $aAforismi di ?iva$9943689 997 $aUNISA LEADER 01192nam a22002891i 4500 001 991002121949707536 005 20030826183747.0 008 030925s1875 it |||||||||||||||||ita 035 $ab12245069-39ule_inst 035 $aARCHE-029268$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a10.9034 100 1 $aAcri, Francesco$079469 245 10$aCritica di alcune critiche di Spaventa, Fiorentino, Imbriani su i nostri filosofi moderni /$clettera del prof. Acri al prof. Fiorentino 260 $aBologna :$bSocietà tipografica dei Compositori,$c1875 300 $a153 p. ;$c19 cm 650 4$aFilosofia 650 4$aFiorentino, Francesco 650 4$aImbriani, Paolo Emilio 650 4$aSpaventa, Silvio 907 $a.b12245069$b02-04-14$c08-10-03 912 $a991002121949707536 945 $aLE002 190.9034 ACR 945 $aLE002 Fil. II N 10$g1$i2002000060778$lle002$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i12630317$z08-10-03 996 $aCritica di alcune critiche di Spaventa, Fiorentino, Imbriani su i nostri filosofi moderni$9154346 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fita$git $h0$i1 LEADER 03496nam 2200649Ia 450 001 9910785320203321 005 20220419014147.0 010 $a1-282-93542-9 010 $a9786612935428 010 $a1-4008-2696-9 024 7 $a10.1515/9781400826964 035 $a(CKB)2670000000059261 035 $a(EBL)617545 035 $a(OCoLC)697174426 035 $a(SSID)ssj0000469500 035 $a(PQKBManifestationID)11299156 035 $a(PQKBTitleCode)TC0000469500 035 $a(PQKBWorkID)10531564 035 $a(PQKB)11410623 035 $a(DE-B1597)446440 035 $a(OCoLC)979576704 035 $a(DE-B1597)9781400826964 035 $a(Au-PeEL)EBL617545 035 $a(CaPaEBR)ebr10435959 035 $a(CaONFJC)MIL293542 035 $a(MiAaPQ)EBC617545 035 $a(PPN)170235769 035 $a(EXLCZ)992670000000059261 100 $a20050930d2006 uy 0 101 0 $aeng 135 $aurnn#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aGeneral theory of algebraic equations$b[electronic resource] /$fEtienne Be?zout ; translated by Eric Feron 205 $aCore Textbook 210 $aPrinceton $cPrinceton University Press$dc2006 215 $a1 online resource (362 p.) 300 $aDescription based upon print version of record. 311 0 $a0-691-11432-3 327 $tFront matter --$tContents --$tTranslator's Foreword --$tDedication from the 1779 edition --$tPreface to the 1779 edition --$tIntroduction --$tBook One --$tBook Two 330 $aThis book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field. 606 $aEquations, Theory of 606 $aMathematics 615 0$aEquations, Theory of. 615 0$aMathematics. 676 $a512.9/4 686 $aSK 230$qBSZ$2rvk 700 $aBe?zout$b Etienne$f1730-1783.$0331688 701 $aFeron$b Eric$f1967-$01475509 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910785320203321 996 $aGeneral theory of algebraic equations$93689726 997 $aUNINA