LEADER 04924nam 2200757 a 450 001 9910785093403321 005 20230607221517.0 010 $a981-277-823-3 035 $a(CKB)1000000000411044 035 $a(EBL)1679294 035 $a(OCoLC)879023415 035 $a(SSID)ssj0000249411 035 $a(PQKBManifestationID)11192980 035 $a(PQKBTitleCode)TC0000249411 035 $a(PQKBWorkID)10223519 035 $a(PQKB)11249569 035 $a(MiAaPQ)EBC1679294 035 $a(WSP)00004853 035 $a(Au-PeEL)EBL1679294 035 $a(CaPaEBR)ebr10201321 035 $a(CaONFJC)MIL505452 035 $a(EXLCZ)991000000000411044 100 $a20020919d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSpatio-temporal chaos and vacuum fluctuations of quantized fields$b[electronic resource] /$fChristian Beck 210 $aNew Jersey $cWorld Scientific$dc2002 215 $a1 online resource (292 p.) 225 1 $aAdvanced series in nonlinear dynamics ;$v21 300 $aDescription based upon print version of record. 311 $a981-02-4798-2 320 $aIncludes bibliographical references (p. 253-266) and index. 327 $aContents ; Preface ; Introduction ; Chapter 1 Chaotic quantization of field theories ; 1.1 Stochastic quantization ; 1.2 Dynamical generation of the noise ; 1.3 The free Klein-Gordon field with chaotic noise ; 1.4 * Chaotic quantization in momentum space 327 $a1.5 * Gauge fields with chaotic noise 1.6 Distinguished properties of Tchebyscheff maps ; 1.7 * Graph theoretical method ; 1.8 * Perturbative approach ; Chapter 2 Chaotic strings ; 2.1 Motivation for chaotic strings ; 2.2 Anti-integrable limit of a continuum oN+1-theory 327 $a2.3 Possible generalizations 2.4 Yet another way to derive the chaotic string ; 2.5 Symmetry properties ; 2.6 Stability properties ; 2.7 Fixed points ; 2.8 * Spatio-temporal patterns ; Chapter 3 Vacuum energy of chaotic strings ; 3.1 Self energy of the N = 3 string 327 $a3.2 Self energy of the N = 2 string 3.3 Self energy for general N ; 3.4 Interaction energy of chaotic strings ; 3.5 * Double strings ; 3.6 * Rotating strings ; Chapter 4 Phase transitions and spontaneous symmetry breaking ; 4.1 Some general remarks on phase transitions 327 $a4.2 Vacuum expectation on 1-dimensional lattices 4.3 * Real scalar field on d-dimensional lattices ; 4.4 * Complex scalar field with U(1) symmetry ; 4.5 * Chaotic Higgs field with SU(2) symmetry ; Chapter 5 Stochastic interpretation of the uncertainty relation 327 $a5.1 Fluctuations of momenta and positions 330 $a"This book deals with new applications for coupled map lattices in quantum field theories and elementary particle physics"--P. xiii. 410 0$aAdvanced series in nonlinear dynamics ;$vv. 21. 606 $aCoupled map lattices 606 $aQuantum field theory 606 $aStochastic processes 606 $aString models 606 $aChaotic behavior in systems 606 $aStatistical mechanics 606 $aParticles (Nuclear physics) 615 0$aCoupled map lattices. 615 0$aQuantum field theory. 615 0$aStochastic processes. 615 0$aString models. 615 0$aChaotic behavior in systems. 615 0$aStatistical mechanics. 615 0$aParticles (Nuclear physics) 676 $a530.14/3 700 $aBeck$b Christian$053432 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910785093403321 996 $aSpatio-temporal chaos and vacuum fluctuations of quantized fields$93761263 997 $aUNINA