LEADER 01655nam0 2200337 i 450 001 SUN0055693 005 20151120101600.498 010 $a15-8488-005-8 100 $a20061110d2001 |0engc50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aInverse boundary spectral problems$fAlexander Katchalov, Yaroslav Kurylev, Matti Lassas 210 $aBoca Raton [etc.]$cChapman & Hall$dc2001 215 $a290 p.$cill.$d25 cm. 410 1$1001SUN0050449$12001 $aChapman & Hall CRC monographs and surveys in pure and applied mathematics$v123$1210 $aBoca Raton [etc.]$cChapman & Hall. 606 $a35-XX$xPartial differential equations [MSC 2020]$2MF$3SUNC019763 606 $a58J50$xSpectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]$2MF$3SUNC021225 606 $a35R30$xInverse problems for PDEs [MSC 2020]$2MF$3SUNC021918 606 $a93B30$xSystem identification [MSC 2020]$2MF$3SUNC023144 606 $a65N21$xNumerical methods for inverse problems for boundary value problems involving PDEs [MSC 2020]$2MF$3SUNC029363 620 $aUS$dBoca Raton$3SUNL000070 700 1$aKachalov$b, Alexander$3SUNV044179$0725883 701 1$aKurylev$b, Yaroslav$3SUNV044180$0514479 701 1$aLassas$b, Matti$3SUNV044181$0514480 712 $aChapman & Hall$3SUNV000138$4650 801 $aIT$bSOL$c20201026$gRICA 912 $aSUN0055693 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 35-XX 2154 $e08 6281 I 20061110 996 $aInverse boundary spectral problems$91424705 997 $aUNICAMPANIA LEADER 02924oam 2200625I 450 001 9910784944603321 005 20230808211025.0 010 $a1-317-18532-3 010 $a1-317-18531-5 010 $a1-315-56567-6 010 $a1-282-64335-5 010 $a9786612643354 010 $a0-7546-9672-3 024 7 $a10.4324/9781315565675 035 $a(CKB)2670000000032468 035 $a(EBL)546510 035 $a(OCoLC)652626130 035 $a(SSID)ssj0000432873 035 $a(PQKBManifestationID)11291236 035 $a(PQKBTitleCode)TC0000432873 035 $a(PQKBWorkID)10374823 035 $a(PQKB)11176657 035 $a(MiAaPQ)EBC546510 035 $a(MiAaPQ)EBC4456226 035 $a(Au-PeEL)EBL4456226 035 $a(CaPaEBR)ebr11507081 035 $a(OCoLC)1022790338 035 $a(OCoLC)948604755 035 $a(EXLCZ)992670000000032468 100 $a20180706e20162010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAdrian Willaert and the theory of interval affect $ethe Musica nova madrigals and the novel theories of Zarlino and Vicentino /$fTimothy R. McKinney 210 1$aLondon ;$aNew York :$cRoutledge,$d2016. 215 $a1 online resource (337 p.) 300 $a"An Ashgate book"--Cover. 300 $aFirst published 2010 by Ashgate Publishing. 311 $a0-7546-6509-7 320 $aIncludes bibliographical references and index. 327 $aCover; Contents; List of Tables; List of Musical Examples; Acknowledgements; 1 Contexts; 2 Definition, Evaluation, and Validation of the Theory of Interval Affect; 3 Expressive Functions of Harmony in the Musica nova Madrigals; 4 Willaert's Other Madrigals and the Theory of Interval Affect; 5 The Compositional Legacy of Willaert's Theory of Interval Affect; Select Bibliography; Index 330 $aThe 'theory of interval affect' originates not with Nicola Vicentino or Gioseffo Zarlino, but with their teacher, influential Venetian composer Adrian Willaert (1490-1562). Because Willaert left no theoretical writings of his own, Timothy McKinney uses Willaert's music to reconstruct his innovative theories concerning how music might communicate extra musical ideas. For Willaert, the appellations 'major' and 'minor' no longer signified merely the larger and smaller of a pair of like-numbered intervals; rather, they became categories of sonic character, the members of which are related by a sha 606 $aMadrigals, Italian$zItaly$y16th century$xHistory and criticism 615 0$aMadrigals, Italian$xHistory and criticism. 676 $a782.0092 700 $aMcKinney$b Timothy R.$f1956-,$01520525 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784944603321 996 $aAdrian Willaert and the theory of interval affect$93759147 997 $aUNINA