LEADER 05267nam 2200709Ia 450 001 9910784791503321 005 20200520144314.0 010 $a1-281-92441-5 010 $a9786611924416 010 $a981-277-268-5 035 $a(CKB)1000000000400360 035 $a(EBL)1679401 035 $a(OCoLC)820942629 035 $a(SSID)ssj0000179979 035 $a(PQKBManifestationID)12023530 035 $a(PQKBTitleCode)TC0000179979 035 $a(PQKBWorkID)10148194 035 $a(PQKB)10908864 035 $a(MiAaPQ)EBC1679401 035 $a(WSP)00006266 035 $a(Au-PeEL)EBL1679401 035 $a(CaPaEBR)ebr10201375 035 $a(CaONFJC)MIL192441 035 $a(PPN)168059029 035 $a(EXLCZ)991000000000400360 100 $a20080318d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aInspired by S.S. Chern$b[electronic resource] $ea memorial volume in honor of a great mathematician /$feditor, Phillip A. Griffiths 210 $aHackensack, NJ $cWorld Scientific$dc2006 215 $a1 online resource (528 p.) 225 1 $aNankai tracts in mathematics ;$vv. 11 300 $aDescription based upon print version of record. 311 $a981-270-062-5 311 $a981-270-061-7 320 $aIncludes bibliographical references. 327 $aCONTENTS ; Preface ; Introduction ; Chapter 1: In Memory of Professor S. S. Chern ; Chapter 2: Twisted K-Theory and Cohomology ; 1. Introduction ; 2. The Action of the Automorphism Group ; 3. The Universal Fibration ; 4. The Atiyah-Hirzebruch Spectral Sequence 327 $a5. The Higher Differentials 6. Twisted Cohomology ; 7. The Chern Character ; 8. Chern Classes ; 9. Koschorke Classes ; 10. Operations in Twisted K-Theory ; 11. Appendix ; References ; Chapter 3: Yangian and Its Applications ; 1. Introduction ; 2. Yangian and RTT Relations 327 $a3. Applications of Yangian 4. Remarks ; Acknowledgement ; References ; Chapter 4: Geodesically Reversible Finsler 2-Spheres of Constant Curvature ; 1. Introduction ; 2. Structure Equations ; 3. A Double Fibration ; 4. Classification ; References 327 $aChapter 5: Multiple Solutions of the Prescribed Mean Curvature Equation Part 1 ; Part 2 ; References ; Chapter 6: On the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces ; 1. Introduction ; 2. Finite Dimensional Approximations and Weak Derivatives 327 $a3. Good Finite Dimensional Approximations 4. Differentiability for GFDA Targets ; 5. Bi-Lipschitz (Non)embedding for GFDA Targets ; 6. Appendix: Carnot Groups and Radon-Nikodym Targets ; References ; Chapter 7: Two-Forms on Four-Manifolds and Elliptic Equations ; 1. Background 327 $a2. A Class of Elliptic PDE 330 $aShiing-Shen Chern (1911-2004) was one of the leading differential geometers of the twentieth century. In 1946, he founded the Mathematical Institute of Academia Sinica in Shanghai, which was later moved to Nanking. In 1981, he founded the Mathematical Sciences Research Institute (MSRI) at Berkeley and acted as the director until 1984. In 1985, he founded the Nankai Institute of Mathematics in Tianjin. He was awarded the National Medal of Science in 1975; the Wolf Prize in mathematics in 1984; and the Shaw Prize in mathematical sciences in 2004. Chern's works span all the classic fields of di 410 0$aNankai tracts in mathematics ;$vv. 11. 606 $aGeometry 606 $aGeometry, Differential 615 0$aGeometry. 615 0$aGeometry, Differential. 676 $a516 686 $a31.52$2bcl 701 $aGriffiths$b Phillip$f1938-$057421 701 $aChern$b Shiing-Shen$f1911-2004.$045718 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784791503321 996 $aInspired by S.S. Chern$93725144 997 $aUNINA