LEADER 01266nas 22004093 450 001 996277450303316 005 20230222213018.0 011 $a2641-242X 035 $a(DE-599)ZDB2119312-5 035 $a(OCoLC)565376036 035 $a(CKB)110978977280610 035 $a(CONSER)--2019201803 035 $a(EXLCZ)99110978977280610 100 $a20100321b19491972 --- a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aJournal of correctional education 210 1$a[Lowell, Florida] :$cCorrectional Education Association,$d[1949-1972] 215 $a1 online resource 300 $aOfficial publication of the Correctional Education Association. 311 $a0022-0159 606 $aPrisoners$xEducation$vPeriodicals 606 $aPrisoners$xEducation$2fast$3(OCoLC)fst01077127 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aPrisoners$xEducation 615 7$aPrisoners$xEducation. 676 $a365/.666 676 $a365/.7 712 02$aCorrectional Education Association (U.S.) 906 $aJOURNAL 912 $a996277450303316 996 $aJournal of correctional education$91888852 997 $aUNISA LEADER 01399nam 2200385 n 450 001 996392217203316 005 20230717171320.0 035 $a(CKB)1000000000676734 035 $a(EEBO)2240873400 035 $a(UnM)99829856 035 $a(UnM)9927928500971 035 $a(EXLCZ)991000000000676734 100 $a19950629d1660 uy | 101 0 $aeng 135 $aurbn#|||a|bb| 200 00$aTo know the hour and minute of the sun-rising and setting at any time of the year, in any place of the havitable world. By Henry Philips$b[electronic resource] 210 $a[London $cs.n.$d1660?] 215 $a[8] p. $ctables 300 $aCaption title. 300 $aLeaves unsigned. 300 $aRecto of second leaf and verso of third leaf are blank. 300 $aImprint and format from Wing. 300 $aAttributed by Wing to Henry Phillippes. 300 $aReproduction of the original at the British Library. 330 $aeebo-0018 607 $aSun$xRising and setting$vTables$vEarly works to 1800 700 $aPhillippes$b Henry$fd. 1677?$01000938 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996392217203316 996 $aTo know the hour and minute of the sun-rising and setting at any time of the year, in any place of the havitable world. By Henry Philips$92304543 997 $aUNISA LEADER 05364nam 2200649Ia 450 001 9910784656403321 005 20200520144314.0 010 $a1-281-00538-X 010 $a9786611005382 010 $a0-08-049100-6 035 $a(CKB)1000000000364038 035 $a(EBL)294574 035 $a(OCoLC)437181594 035 $a(SSID)ssj0000135046 035 $a(PQKBManifestationID)11146466 035 $a(PQKBTitleCode)TC0000135046 035 $a(PQKBWorkID)10056921 035 $a(PQKB)10256503 035 $a(Au-PeEL)EBL294574 035 $a(CaPaEBR)ebr10186413 035 $a(CaONFJC)MIL100538 035 $a(MiAaPQ)EBC294574 035 $a(EXLCZ)991000000000364038 100 $a20060718d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aData preparation for data mining using SAS$b[electronic resource] /$fMamdouh Refaat 210 $aAmsterdam ;$aBoston $cMorgan Kaufmann Publishers$dc2007 215 $a1 online resource (425 p.) 225 1 $aThe Morgan Kaufmann series in data management systems 300 $aDescription based upon print version of record. 311 $a0-12-373577-7 320 $aIncludes bibliographical references (p. 373-374) and index. 327 $aFront Cover; Data Preparation for Data Mining Using SAS; Copyright Page; Contents; List of Figures; List of Tables; Preface; CHAPTER 1. INTRODUCTION; 1.1 The Data Mining Process; 1.2 Methodologies of Data Mining; 1.3 The Mining View; 1.4 The Scoring View; 1.5 Notes on Data Mining Software; CHAPTER 2. TASKS AND DATA FLOW; 2.1 Data Mining Tasks; 2.2 Data Mining Competencies; 2.3 The Data Flow; 2.4 Types of Variables; 2.5 The Mining View and the Scoring View; 2.6 Steps of Data Preparation; CHAPTER 3. REVIEW OF DATA MINING MODELING TECHNIQUES; 3.1 Introduction; 3.2 Regression Models 327 $a3.3 Decision Trees3.4 Neural Networks; 3.5 Cluster Analysis; 3.6 Association Rules; 3.7 Time Series Analysis; 3.8 Support Vector Machines; CHAPTER 4. SAS MACROS: A QUICK START; 4.1 Introduction:Why Macros?; 4.2 The Basics: The Macro and Its Variables; 4.3 Doing Calculations; 4.4 Programming Logic; 4.5 Working with Strings; 4.6 Macros That Call Other Macros; 4.7 Common Macro Patterns and Caveats; 4.8 Where to Go From Here; CHAPTER 5. DATA ACQUISITION AND INTEGRATION; 5.1 Introduction; 5.2 Sources of Data; 5.3 Variable Types; 5.4 Data Rollup; 5.5 Rollup with Sums, Averages, and Counts 327 $a5.6 Calculation of the Mode5.7 Data Integration; CHAPTER 6. INTEGRITY CHECKS; 6.1 Introduction; 6.2 Comparing Datasets; 6.3 Dataset Schema Checks; 6.4 Nominal Variables; 6.5 Continuous Variables; CHAPTER 7. EXPLORATORY DATA ANALYSIS; 7.1 Introduction; 7.2 Common EDA Procedures; 7.3 Univariate Statistics; 7.4 Variable Distribution; 7.5 Detection of Outliers; 7.6 Testing Normality; 7.7 Cross-tabulation; 7.8 Investigating Data Structures; CHAPTER 8. SAMPLING AND PARTITIONING; 8.1 Introduction; 8.2 Contents of Samples; 8.3 Random Sampling; 8.4 Balanced Sampling; 8.5 Minimum Sample Size 327 $a8.6 Checking Validity of SampleCHAPTER 9. DATA TRANSFORMATIONS; 9.1 Raw and Analytical Variables; 9.2 Scope of Data Transformations; 9.3 Creation of New Variables; 9.4 Mapping of Nominal Variables; 9.5 Normalization of Continuous Variables; 9.6 Changing the Variable Distribution; CHAPTER 10. BINNING AND REDUCTION OF CARDINALITY; 10.1 Introduction; 10.2 Cardinality Reduction; 10.3 Binning of Continuous Variables; CHAPTER 11. TREATMENT OF MISSING VALUES; 11.1 Introduction; 11.2 Simple Replacement; 11.3 Imputing Missing Values; 11.4 Imputation Methods and Strategy 327 $a11.5 SAS Macros for Multiple Imputation11.6 Predicting Missing Values; CHAPTER 12. PREDICTIVE POWER AND VARIABLE REDUCTION I; 12.1 Introduction; 12.2 Metrics of Predictive Power; 12.3 Methods of Variable Reduction; 12.4 Variable Reduction: Before or During Modeling; CHAPTER 13. ANALYSIS OF NOMINAL AND ORDINAL VARIABLES; 13.1 Introduction; 13.2 Contingency Tables; 13.3 Notation and Definitions; 13.4 Contingency Tables for Binary Variables; 13.5 Contingency Tables for Multicategory Variables; 13.6 Analysis of Ordinal Variables; 13.7 Implementation Scenarios 327 $aCHAPTER 14. ANALYSIS OF CONTINUOUS VARIABLES 330 $aAre you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little "how to? information? And are you, like most analysts, preparing the data in SAS?This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation o 410 0$aMorgan Kaufmann series in data management systems. 606 $aData mining 615 0$aData mining. 676 $a005.74 676 $a006.3/12 22 676 $a006.312 700 $aRefaat$b Mamdouh$01497173 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784656403321 996 $aData preparation for data mining using SAS$93722223 997 $aUNINA