LEADER 01602oam 2200481 450 001 9910711586803321 005 20181026072411.0 035 $a(CKB)5470000002484180 035 $a(OCoLC)953266448 035 $a(OCoLC)995470000002484180 035 $a(EXLCZ)995470000002484180 100 $a20160708d1950 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCoal resources of the United States $ea progress report, Nov. l, 1950 /$fby Paul Averitt and Louise R. Berryhill 210 1$aWashington, D.C. :$cUnited States Department of the Interior, Geological Survey,$d1950. 215 $a1 online resource (ii, 33 pages) $cillustrations, maps 225 1 $aGeological Survey circular ;$v94 300 $a"December 1950." 300 $a"Prepared as part of a program of the Department of the Interior for development of the Missouri River basin." 320 $aIncludes bibliographical references (pages 32-33). 517 $aCoal resources of the United States 606 $aCoal$zUnited States 606 $aCoal$2fast 607 $aUnited States$2fast 615 0$aCoal 615 7$aCoal. 700 $aAveritt$b Paul$f1908-1991,$01386989 702 $aBerryhill$b Louise R. 712 02$aGeological Survey (U.S.), 801 0$bCOP 801 1$bCOP 801 2$bOCLCO 801 2$bOCLCF 801 2$bOCLCA 801 2$bGPO 906 $aBOOK 912 $a9910711586803321 996 $aCoal resources of the United States$93446947 997 $aUNINA LEADER 04158nam 2200673 a 450 001 9910784601603321 005 20230829001350.0 010 $a1-281-37323-0 010 $a9786611373238 010 $a981-277-249-9 035 $a(CKB)1000000000399061 035 $a(EBL)1681615 035 $a(OCoLC)879074330 035 $a(SSID)ssj0000183009 035 $a(PQKBManifestationID)11170406 035 $a(PQKBTitleCode)TC0000183009 035 $a(PQKBWorkID)10173307 035 $a(PQKB)11133771 035 $a(MiAaPQ)EBC1681615 035 $a(WSP)00006309 035 $a(Au-PeEL)EBL1681615 035 $a(CaPaEBR)ebr10201378 035 $a(CaONFJC)MIL137323 035 $a(EXLCZ)991000000000399061 100 $a20061101d2006 uy 0 101 0 $aeng 135 $aurbuu|||uu||| 181 $ctxt 182 $cc 183 $acr 200 13$aAn introduction to the mathematical theory of vibrations of elastic plates$b[electronic resource] /$fR.D. Mindlin ; edited by Jiashi Yang 210 $aHackensack, N.J. $cWorld Scientific$dc2006 215 $a1 online resource (212 p.) 300 $aDescription based upon print version of record. 311 $a981-270-381-0 320 $aIncludes bibliographical references (p. 175-180) and index. 327 $aContents; Foreword; Preface; Chapter 1: Elements of the Linear Theory of Elasticity; 1.01 Notation; 1.02 Principle of Conservation of Energy; 1.03 Hooke's Law; 1.04 Constants of Elasticity; 1.05 Uniqueness of Solutions; 1.06 Variational Equation of Motion 327 $a1.07 Displacement-Equations of Motion Chapter 2: Solutions of the Three-Dimensional Equations; 2.01 Introductory; 2.02 Simple Thickness-Modes in an Infinite Plate; 2.03 Simple Thickness-Modes in an Infinite, Isotropic Plate; 2.04 Simple Thickness-Modes in an Infinite, Monoclinic Plate; 2.05 Simple Thickness-Modes in an Infinite, Triclinic Plate 327 $a2.06 Plane Strain in an Isotropic Body 2.07 Equivoluminal Modes; 2.08 Wave-Nature of Equivoluminal Modes; 2.09 Infinite, Isotropic Plate Held between Smooth, Rigid Surfaces (Plane Strain); 2.10 Infinite, Isotropic Plate Held between Smooth, Elastic Surfaces (Plane Strain); 2.11 Coupled Dilatational and Equivoluminal Modes in an Infinite, Isotropic Plate with Free Faces (Plane Strain) 327 $a2.12 Three-Dimensional Coupled Dilatational and Equivoluminal Modes in an Infinite Isotropic Plate with Free Faces 2.13 Solutions in Cylindrical Coordinates; 2.14 Additional Boundaries; Chapter 3: Infinite Power Series of Two-Dimensional Equations; 3.01 Introductory 327 $a3.02 Stress-Equations of Motion 3.03 Strain; 3.04 Stress-Strain Relations; 3.05 Strain-Energy and Kinetic Energy; 3.06 Uniqueness of Solutions; 3.07 Plane Tensors; Chapter 4: Zero-Order Approximation; 4.01 Separation of Zero-Order Terms from Series 327 $a4.02 Uniqueness of Solutions 330 $aThis book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with pr 606 $aElastic plates and shells 606 $aVibration$xMathematical models 606 $aNonlinear theories 615 0$aElastic plates and shells. 615 0$aVibration$xMathematical models. 615 0$aNonlinear theories. 676 $a624.1/776 700 $aMindlin$b Raymond D$g(Raymond David),$f1906-1987.$01499066 701 $aYang$b Jiashi$f1956-$0476573 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784601603321 996 $aAn introduction to the mathematical theory of vibrations of elastic plates$93724878 997 $aUNINA