LEADER 05382nam 2200673Ia 450 001 9910784592603321 005 20200520144314.0 010 $a1-281-03451-7 010 $a9786611034511 010 $a0-08-055191-2 035 $a(CKB)1000000000357725 035 $a(EBL)313592 035 $a(OCoLC)437189439 035 $a(SSID)ssj0000120388 035 $a(PQKBManifestationID)11134558 035 $a(PQKBTitleCode)TC0000120388 035 $a(PQKBWorkID)10091797 035 $a(PQKB)10187446 035 $a(Au-PeEL)EBL313592 035 $a(CaPaEBR)ebr10190879 035 $a(CaONFJC)MIL103451 035 $a(MiAaPQ)EBC313592 035 $a(PPN)182574741 035 $a(EXLCZ)991000000000357725 100 $a20070426d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aChemical bonding at surfaces and interfaces$b[electronic resource] /$fedited by Anders Nilsson, Lars G.M. Pettersson and Jens K. N?orskov 210 $aAmsterdam ;$aOxford $cElsevier$d2008 215 $a1 online resource (533 p.) 300 $aDescription based upon print version of record. 311 $a0-444-52837-7 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Chemical Bonding at Surfaces and Interfaces; Copyright Page; Table of Contents; Preface; Chapter 1 Surface Structure; 1. Why surface structure?; 2. Methods of surface adsorbate structure determination; 2.1. General comments; 2.2. Electron scattering; 2.3. X-ray scattering; 2.4. Ion scattering; 2.5. Spectroscopic methods and scanning probe microscopy; 3. Adsorbate-induced surface reconstruction; 4. Molecular adsorbates - local sites, orientations and intramolecular bondlengths; 4.1. General issues and the case of CO on metals; 4.2. Simple hydrocarbons on metals 327 $a4.3. Carboxylates on metals4.4. Other substrates: molecules on Si; 5. Chemisorption bondlengths; 5.1. Metal surfaces; 5.2. Oxide surfaces; 6. Conclusions; Chapter 2 Adsorbate Electronic Structure and Bonding on Metal Surfaces; 1. Introduction; 2. Probing the electronic structure; 3. Adsorbate electronic structure and chemical bonding; 4. Adsorbate systems; 5. Radical atomic adsorption; 5.1. The electronic structure of N on Cu(100); 5.2. Chemical bonding of atomic adsorbates; 6. Diatomic molecules; 6.1. N2 adsorbed on Ni(100); 6.2. CO adsorbed on Ni(100) 327 $a6.3. CO adsorbed on Cu(100) and other metals6.4. CO adsorbed in different sites; 6.5. Coadsorption of CO and K on Ni(100); 7. Unsaturated hydrocarbons; 7.1. Ethylene (C2H4) adsorbed on Ni(110) and Cu(110); 7.2. Benzene on Ni and Cu surfaces; 7.3. Bond energetics and rehybridization from spin-uncoupling; 8. Saturated hydrocarbons; 8.1. n-Octane adsorbed on Cu(110); 8.2. Difference between octane on Ni and Cu surfaces; 9. Lone pair interactions; 9.1. Water adsorption on Pt and Cu surfaces; 9.2. Adsorption of ammonia and the amino group in glycine on Cu(110); 10. Summary 327 $aChapter 3 The Dynamics of Making and Breaking Bonds at Surfaces1. Introduction; 2. Theoretical background; 2.1. Adiabatic dynamics (Born-Oppenheimer approximation); 2.2. Generic PES topologies; 2.3. Dynamics vs. kinetics; 2.3.1. Direct dissociation; 2.3.2. Precursor-mediated dissociation; 2.4. Detailed balance; 2.5. Lattice coupling; 2.5.1. Energy transfer in adsorption/scattering; 2.5.2. Lattice coupling in direct molecular dissociation; 2.6. Non-adiabatic dynamics; 2.6.1. Hot electrons from chemistry; 2.6.2. Chemistry from hot electrons; 3. Experimental background 327 $a3.1. Experimental techniques3.2. Typical measurements; 3.2.1. Rate measurements; 3.2.2. Adsorption-trapping and sticking; 3.2.3. Desorption; 3.2.4. Scattering; 3.2.5. Initial state preparation; 3.2.6. Photochemistry/femtochemistry; 3.2.7. Single molecule chemistry (STM); 4. Processes; 4.1. Atomic adsorption/desorption/scattering; 4.1.1. Ar/Pt(111); 4.1.2. H/Cu(111); 4.2. Molecular adsorption/desorption/scattering; 4.2.1. NO/Ag(111); 4.2.2. NO/Pt(111); 4.3. Direct dissociation/associative desorption; 4.3.1. Activated dissociation; 4.3.2. Weakly activated dissociation 327 $a4.3.3. Non-activated dissociation 330 $aMolecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the i 606 $aChemical bonds 606 $aSurface chemistry 615 0$aChemical bonds. 615 0$aSurface chemistry. 676 $a541.224 686 $aVE 7000$2rvk 701 $aNilsson$b Anders$0792180 701 $aPettersson$b Lars$01517906 701 $aN?orskov$b J. K$g(Jens K.)$01517907 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784592603321 996 $aChemical bonding at surfaces and interfaces$93755162 997 $aUNINA