LEADER 05231nam 2200661Ia 450 001 9910784515103321 005 20230607221408.0 010 $a981-277-790-3 035 $a(CKB)1000000000399395 035 $a(EBL)1679609 035 $a(OCoLC)879074270 035 $a(SSID)ssj0000161442 035 $a(PQKBManifestationID)11177598 035 $a(PQKBTitleCode)TC0000161442 035 $a(PQKBWorkID)10198513 035 $a(PQKB)10058661 035 $a(MiAaPQ)EBC1679609 035 $a(WSP)00004901 035 $a(Au-PeEL)EBL1679609 035 $a(CaPaEBR)ebr10201158 035 $a(CaONFJC)MIL505425 035 $a(EXLCZ)991000000000399395 100 $a20020729d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeneralized point models in structural mechanics$b[electronic resource] /$fIvan V. Andronov 210 $aSingapore ;$aRiver Edge, N.J. $cWorld Scientific$dc2002 215 $a1 online resource (276 p.) 225 1 $aSeries on stability, vibration, and control of systems. Series A ;$vv. 5 300 $aDescription based upon print version of record. 311 $a981-02-4878-4 320 $aIncludes bibliographical references and index. 327 $aContents ; Preface ; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models ; 1.1 Kirchhoff model for flexural waves ; 1.1.1 Fundamentals of elasticity ; 1.1.2 Flexural deformations of thin plates ; 1.1.3 Differential operator and boundary conditions 327 $a1.1.4 Flexural waves 1.2 Fluid loaded plates ; 1.3 Scattering problems and general properties of solutions ; 1.3.1 Problem formulation ; 1.3.2 Green's function of unperturbed problem ; 1.3.3 Integral representation ; 1.3.4 Optical theorem ; 1.3.5 Uniqueness of the solution 327 $a1.3.6 Flexural wave concentrated near a circular hole 1.4 Classical point models ; 1.4.1 Point models in two dimensions ; 1.4.2 Scattering by crack at oblique incidence ; 1.4.3 Point models in three dimensions ; 1.5 Scattering problems for plates with infinite crack 327 $a1.5.1 General properties of boundary value problems 1.5.2 Scattering problems in isolated plates ; 1.5.3 Scattering by pointwise joint ; Chapter 2 Operator Methods in Diffraction ; 2.1 Abstract operator theory ; 2.1.1 Hilbert space ; 2.1.2 Operators 327 $a2.1.3 Adjoint symmetric and selfadjoint operators 2.1.4 Extension theory ; 2.2 Space L2 and differential operators ; 2.2.1 Hilbert space L2 ; 2.2.2 Generalized derivatives ; 2.2.3 Sobolev spaces and embedding theorems ; 2.3 Problems of scattering ; 2.3.1 Harmonic operator 327 $a2.3.2 Bi-harmonic operator 330 $a This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value problems for partial differential operators of the fourth order.
Contents:
< 410 0$aSeries on stability, vibration, and control of systems.$nSeries A ;$vv. 5. 606 $aStructural analysis (Engineering)$xMathematical models 606 $aStructural engineering 615 0$aStructural analysis (Engineering)$xMathematical models. 615 0$aStructural engineering. 676 $a515.35 676 $a624.1/71 676 $a624.171 700 $aAndronov$b I. V$g(Ivan V.)$01126698 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784515103321 996 $aGeneralized point models in structural mechanics$93829564 997 $aUNINA