LEADER 02369nam 2200673Ia 450 001 9910454331303321 005 20200520144314.0 010 $a1-282-15550-4 010 $a9786612155505 010 $a90-272-9338-4 024 3 $z9789027247902 035 $a(CKB)1000000000535059 035 $a(OCoLC)320321525 035 $a(CaPaEBR)ebrary10137860 035 $a(SSID)ssj0000398663 035 $a(PQKBManifestationID)12170582 035 $a(PQKBTitleCode)TC0000398663 035 $a(PQKBWorkID)10363966 035 $a(PQKB)10816960 035 $a(SSID)ssj0000387926 035 $a(PQKBManifestationID)11286733 035 $a(PQKBTitleCode)TC0000387926 035 $a(PQKBWorkID)10411304 035 $a(PQKB)11064147 035 $a(MiAaPQ)EBC622911 035 $a(Au-PeEL)EBL622911 035 $a(CaPaEBR)ebr10137860 035 $a(CaONFJC)MIL215550 035 $a(OCoLC)732803668 035 $a(EXLCZ)991000000000535059 100 $a20060523d2006 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPhonetics, phonology and dialectology$b[electronic resource] 210 $aAmsterdam ;$aPhiladelphia $cJohn Benjamins$dc2006 215 $a1 online resource (224 p.) 225 1 $aAmsterdam studies in the theory and history of linguistic science. Series IV, Current issues in linguistic theory,$x0304-0763 ;$vv. 276 225 0 $aNew perspectives on Romance linguistics :selected papers from the 35th Linguistic Symposium on Romance Languages (LSRL), Austin, Texas, February 2005 ;$vv.2 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a90-272-4790-0 320 $aIncludes bibliographical references and index. 410 0$aAmsterdam studies in the theory and history of linguistic science.$nSeries IV,$pCurrent issues in linguistic theory ;$vv. 276. 606 $aRomance languages$vCongresses 606 $aLinguistics$vCongresses 608 $aElectronic books. 615 0$aRomance languages 615 0$aLinguistics 701 $aNishida$b Chiyo$0317510 701 $aMontreuil$b Jean-Pierre$0317511 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454331303321 996 $aPhonetics, phonology and dialectology$92491121 997 $aUNINA LEADER 03402nam 22006732 450 001 9910784344203321 005 20151005020621.0 010 $a1-107-15482-0 010 $a1-280-51593-7 010 $a9786610515936 010 $a0-511-22032-4 010 $a0-511-22120-7 010 $a0-511-21923-7 010 $a0-511-31459-0 010 $a0-511-61682-1 010 $a0-511-21991-1 035 $a(CKB)1000000000352418 035 $a(EBL)261126 035 $a(OCoLC)228144788 035 $a(SSID)ssj0000238238 035 $a(PQKBManifestationID)11176434 035 $a(PQKBTitleCode)TC0000238238 035 $a(PQKBWorkID)10222283 035 $a(PQKB)11374013 035 $a(UkCbUP)CR9780511616822 035 $a(MiAaPQ)EBC261126 035 $a(Au-PeEL)EBL261126 035 $a(CaPaEBR)ebr10130351 035 $a(CaONFJC)MIL51593 035 $a(PPN)137615175 035 $a(EXLCZ)991000000000352418 100 $a20090915d2006|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRiemannian geometry $ea modern introduction /$fIsaac Chavel$b[electronic resource] 205 $aSecond edition. 210 1$aCambridge :$cCambridge University Press,$d2006. 215 $a1 online resource (xvi, 471 pages) $cdigital, PDF file(s) 225 1 $aCambridge studies in advanced mathematics ;$v98 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-61954-8 311 $a0-521-85368-0 320 $aIncludes bibliographical references (p. 449-464) and indexes. 327 $gI.$tRiemannian manifolds --$gII.$tRiemannian curvature --$gIII.$tRiemannian volume --$gIV.$tRiemannian coverings --$gV.$tSurfaces --$gVI.$tIsoperimetric inequalities (constant curvature) --$gVII.$tThe kinematic density --$gVIII.$tIsoperimetric inequalities (variable curvature) --$gIX.$tComparison and finiteness theorems. 330 $aThis book provides an introduction to Riemannian geometry, the geometry of curved spaces, for use in a graduate course. Requiring only an understanding of differentiable manifolds, the author covers the introductory ideas of Riemannian geometry followed by a selection of more specialized topics. Also featured are Notes and Exercises for each chapter, to develop and enrich the reader's appreciation of the subject. This second edition, first published in 2006, has a clearer treatment of many topics than the first edition, with new proofs of some theorems and a new chapter on the Riemannian geometry of surfaces. The main themes here are the effect of the curvature on the usual notions of classical Euclidean geometry, and the new notions and ideas motivated by curvature itself. Completely new themes created by curvature include the classical Rauch comparison theorem and its consequences in geometry and topology, and the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. 410 0$aCambridge studies in advanced mathematics ;$v98. 606 $aGeometry, Riemannian 615 0$aGeometry, Riemannian. 676 $a516.3/73 700 $aChavel$b Isaac$053814 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910784344203321 996 $aRiemannian geometry$9336905 997 $aUNINA