LEADER 05575nam 2200709Ia 450 001 9910780724903321 005 20230124183358.0 010 $a1-282-75782-2 010 $a9786612757822 010 $a981-4261-64-5 035 $a(CKB)2490000000001628 035 $a(EBL)1679341 035 $a(OCoLC)729020048 035 $a(SSID)ssj0000426299 035 $a(PQKBManifestationID)11285554 035 $a(PQKBTitleCode)TC0000426299 035 $a(PQKBWorkID)10388996 035 $a(PQKB)11027948 035 $a(MiAaPQ)EBC1679341 035 $a(WSP)00000541 035 $a(Au-PeEL)EBL1679341 035 $a(CaPaEBR)ebr10422062 035 $a(CaONFJC)MIL275782 035 $a(EXLCZ)992490000000001628 100 $a20090116d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProperties and applications of complex intermetallics$b[electronic resource] /$fedited by Esther Belin-Ferre? 210 $aSingapore ;$aLondon $cWorld Scientific$dc2010 215 $a1 online resource (458 p.) 225 1 $aBook series on complex metallic alloys ;$vv. 2 300 $aDescription based upon print version of record. 311 $a981-4261-63-7 320 $aIncludes bibliographical references. 327 $aCONTENTS; Foreword; Chapter 1: Metallic, Complex and So Different Jean-Marie Dubois; 1. Introduction; 2. Historical Background; 3. Complexity in Real and Reciprocal Space; 3.1. The example of compounds of Al, Mg and Zn; 3.2. Hierarchy, groups of atoms and clusters; 3.3. The key role played by disorder and defects; 3.4. Definition of a CMA in reciprocal space; 4. Metallurgy and Surface Chemistry of CMAs; 4.1. Preparation methods; 4.2. Corrosion, oxidation and interaction with chemical atmosphere; 4.3. Atom transport; 4.4. Essential mechanical properties; 4.5. Metadislocations 327 $a5. Phase Selection 5.1. Hume-Rothery rules; 5.2. More on specific Al-TM CMAs; 5.3. The case of g-brass type CMAs; 5.4. The case of Al-Mg(-Zn) alloys; 5.4.1. Locating d-like states in Al-TM based alloys; 5.4.2. Alloys based on Al, Mg, and possibly containing Zn; 5.4.3. A supplementary mechanism for phase selection and stability?; 6. Properties of Al-Transition Metal(s) CMAs; 6.1. The essential property of Al-TM CMAs; 6.2. Transport properties; 6.3. Solid-solid contact; 6.3.1. Fretting; 6.3.2. Friction anisotropy; 6.3.3. Surface energy; 6.4. Wetting against liquid metals 327 $a6.5. Wetting against polar liquids7. Inverse Nano-Structuration; 8. Conclusion; Acknowledgments; References; Chapter 2: Solution Growth of Intermetallic Single Crystals: A Beginner's Guide Paul Canfield; 1. Introduction; 2. What Do You Need?; 3. Planning the Growth; 4. Assembling the Growth; 5. Running the Growth; 6. Decanting; 7. Opening the Growth and Planning the Next One; 8. Final Remarks; Acknowledgments; References; Chapter 3: Thermal Conductivity of Complex Metallic Alloys Ana Smontara, Ante Bilu Deljko Bihar and Igor Smiljani; 1. Introduction 327 $a2. Basics of the Thermal Conductivity Measurements 2.1. Heat losses in thermal conductivity measurements; 2.2. Example - thermal conductivity of magnetite Fe3O4; 3. The Analysis of Experimental Thermal Conductivity Data; 3.1. Thermal conductivity of metals and alloys; 3.2. Thermal conductivity of complex metallic alloys; 3.2.1. ?' and ? -phases in the AlPdMn complex metallic system; 3.2.2. ?-Al3Mg2 complex metallic alloy; 3.2.3. Mg32(Al,Zn)49 complex metallic alloy; 3.2.4. e-phase in the AlPd (Fe,Co,Rh) complex metallic system; 4. Conclusions; Acknowledgments; References 327 $aChapter 4: Thermoelectric Materials Silke Pashen 1. Introduction; 2. Cage Compounds; 2.1. Definitions; 2.1.1. Guest/host atoms; 2.1.2. Coordination number (c.n.); 2.1.3. Bond length/strength; 2.1.4. Empty host; 2.2. Examples; 2.2.1. Filled skutterudites; 2.2.2. Intermetallic clathrates; 2.2.3. Clathrate-like compounds; 2.2.4. Oxides; 2.3. Characteristic properties of cage compounds; 2.3.1. Rattling/tunneling; 2.3.2. Phonon glass-electron crystal; 2.4. Tuning for optimized performance; 2.4.1. Stoichiometry; 2.4.2. Doping; 2.4.3. Substitution; 2.4.4. Micro/Nanostructuring 327 $a3. Strongly Correlated Cage Compounds 330 $aComplex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption 410 0$aBook series on complex metallic alloys ;$vv. 2. 606 $aAlloys$vCongresses 606 $aIntermetallic compounds$vCongresses 606 $aPhysical metallurgy$vCongresses 610 1 $aMaterials science 610 1 $aComplex intermetallics 615 0$aAlloys 615 0$aIntermetallic compounds 615 0$aPhysical metallurgy 676 $a669 701 $aBelin-Ferre?$b Esther$0889827 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780724903321 996 $aProperties and applications of complex intermetallics$93758130 997 $aUNINA LEADER 02972nam 2200625Ia 450 001 9910784321303321 005 20231206231100.0 010 $a1-280-45220-X 010 $a9786610452200 010 $a1-4593-0264-8 010 $a0-660-19327-2 035 $a(CKB)1000000000351612 035 $a(EBL)227056 035 $a(OCoLC)70720094 035 $a(SSID)ssj0000194799 035 $a(PQKBManifestationID)11183922 035 $a(PQKBTitleCode)TC0000194799 035 $a(PQKBWorkID)10233202 035 $a(PQKB)10750204 035 $a(Au-PeEL)EBL227056 035 $a(CaPaEBR)ebr10104109 035 $a(CaONFJC)MIL45220 035 $a(VaAlCD)20.500.12592/0h4hfr 035 $a(MiAaPQ)EBC227056 035 $a(MiAaPQ)EBC3241957 035 $a(EXLCZ)991000000000351612 100 $a20051118d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLudlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada$b[electronic resource] 210 $aOttawa $cNRC Research Press$dc2004 215 $a1 online resource (151 p.) 300 $aDescription based upon print version of record. 311 $a0-660-19326-4 327 $aAbstract / Re?sume?; Acknowledgments; Introduction; Stratigraphy; Non-graptolite faunas; Biostratigraphy; Biozonal correlation, species diversity, and biogeography; Evolutionary developments in Ludlow and Pridoli graptolites; Systematic paleontology; Order DENDROIDEA Nicholson, 1872; Genus Dictyonema Hall, 1851; Genus Acanthograptus Spencer, 1878; Genus Thallograptus Ruedemann, 1925; Genus Dendrograptus Hall, 1858; Order TUBOIDEA Kozlowski, 1938; Genus Epigraptus Eisenack, 1941; Order GRAPTOLOIDEA Lapworth, 1873; Suborder VIRGELLINA Fortey and Cooper, 1986; References 327 $aAppendix 1: Distribution of species of flattened graptolites in each sectionAppendix 2: Distribution of isolated, three-dimensionally preserved graptolites in each section; Plates 1-46 330 $aGraptolites flourished from earliest Ordovician to Early Devonian, a time range of about 90 million years, and were widely distributed as marine benthic and planktonic colonial organisms around then-world. They were diverse and rapidly evolving and, as such, make excellent ""index fossils"" for relative age-dating of their enclosing basinal rocks. 606 $aGraptolites 606 $aChordata, Fossil 615 0$aGraptolites. 615 0$aChordata, Fossil. 676 $a563/.55 700 $aKoz?owska-Dawidziuk$b Anna$f1958-$01568565 701 $aLenz$b Alfred C.$f1929-$01568566 712 02$aNational Research Council Canada.$bMonograph Publishing Program. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784321303321 996 $aLudlow and Pridoli (Upper Silurian) Graptolites from the Arctic Islands, Canada$93840777 997 $aUNINA