LEADER 03822nam 2200673Ia 450 001 9910784046803321 005 20230721025448.0 010 $a1-281-12080-4 010 $a9786611120801 010 $a981-277-151-4 035 $a(CKB)1000000000334238 035 $a(EBL)312393 035 $a(OCoLC)476100168 035 $a(SSID)ssj0000202444 035 $a(PQKBManifestationID)11202028 035 $a(PQKBTitleCode)TC0000202444 035 $a(PQKBWorkID)10250726 035 $a(PQKB)10353589 035 $a(MiAaPQ)EBC312393 035 $a(WSP)00005945 035 $a(Au-PeEL)EBL312393 035 $a(CaPaEBR)ebr10188797 035 $a(CaONFJC)MIL112080 035 $a(EXLCZ)991000000000334238 100 $a20070206d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMicroscopic chaos, fractals and transport in nonequilibrium statistical mechanics$b[electronic resource] /$fRainer Klages 210 $aHackensack, N.J. $cWorld Scientific$dc2007 215 $a1 online resource (458 p.) 225 1 $aAdvanced series in nonlinear dynamics ;$vv. 24 300 $aDescription based upon print version of record. 311 $a981-256-507-8 320 $aIncludes bibliographical references (p. 381-434) and index. 327 $aPreface; Contents; 1. Introduction and outline; 1.1 Hamiltonian dynamical systems approach to nonequilibrium statistical mechanics; 1.2 Thermostated dynamical systems approach to nonequilibrium statistical mechanics; 1.3 The red thread through this book; Part 1: Fractal transport coefficients; 2. Deterministic diffusion; 3. Deterministic drift-diffusion; 4. Deterministic reaction-diffusion; 5. Deterministic diffusion and random perturbations; 6. From normal to anomalous diffusion; 7. From diffusive maps to Hamiltonian particle billiards 327 $a8. Designing billiards with irregular transport coefficients9. Deterministic diffusion of granular particles; Part 2: Thermostated dynamical systems; 10. Motivation: coupling a system to a thermal reservoir; 11. The Gaussian thermostat; 12. The Nos e-Hoover thermostat; 13. Universalities in Gaussian and Nos e-Hoover dynamics?; 14. Gaussian and Nose-Hoover thermostats revisited; 15. Stochastic and deterministic boundary thermostats; 16. Active Brownian particles and Nos e-Hoover dynamics; Part 3: Outlook and conclusions; 17. Further topics in chaotic transport theory; 18. Conclusions 327 $aBibliographyIndex 330 $aA valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory. Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity. Rec 410 0$aAdvanced series in nonlinear dynamics ;$vv. 24. 606 $aNonequilibrium statistical mechanics 606 $aChaotic behavior in systems 606 $aTransport theory 606 $aFractals 615 0$aNonequilibrium statistical mechanics. 615 0$aChaotic behavior in systems. 615 0$aTransport theory. 615 0$aFractals. 676 $a530.13 700 $aKlages$b Rainer$0964372 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784046803321 996 $aMicroscopic chaos, fractals and transport in nonequilibrium statistical mechanics$93855086 997 $aUNINA