LEADER 03440nam 22007574a 450 001 9910784043403321 005 20200520144314.0 010 $a1-281-88113-9 010 $a9786611881139 010 $a981-270-091-9 024 3 $a9789812564276 035 $a(CKB)1000000000334250 035 $a(EBL)296164 035 $a(OCoLC)228169093 035 $a(SSID)ssj0000198227 035 $a(PQKBManifestationID)11181006 035 $a(PQKBTitleCode)TC0000198227 035 $a(PQKBWorkID)10169562 035 $a(PQKB)10293393 035 $a(MiAaPQ)EBC296164 035 $a(WSP)00001874 035 $a(Au-PeEL)EBL296164 035 $a(CaPaEBR)ebr10173931 035 $a(CaONFJC)MIL188113 035 $a(PPN)166611751 035 $a(EXLCZ)991000000000334250 100 $a20060926d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMarkov chain Monte Carlo$b[electronic resource] $einnovations and applications /$fedited by W.S. Kendall, F. Liang, J.-S. Wang 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2005 215 $a1 online resource (239 p.) 225 1 $aLecture notes series, Institute for Mathematical Sciences, National University of Singapore ;$vvol. 7 300 $aDescription based upon print version of record. 311 $a981-256-427-6 320 $aIncludes bibliographical references and index. 327 $aCONTENTS; Foreword; Preface; Glossary; Introduction to Markov Chain Monte Carlo Simulations and Their Statistical Analysis B. A. Berg; An Introduction to Monte Carlo Methods in Statistical Physics D. P. Landau; Notes on Perfect Simulation W.S. Kendall; Sequential Monte Carlo Methods and Their Applications R. Chen; MCMC in the Analysis of Genetic Data on Pedigrees E. A. Thompson; Index 330 $aMarkov Chain Monte Carlo (MCMC) originated in statistical physics, but has spilled over into various application areas, leading to a corresponding variety of techniques and methods. That variety stimulates new ideas and developments from many different places, and there is much to be gained from cross-fertilization. This book presents five expository essays by leaders in the field, drawing from perspectives in physics, statistics and genetics, and showing how different aspects of MCMC come to the fore in different contexts. The essays derive from tutorial lectures at an interdisciplinary progr 410 0$aLecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;$vv. 7. 606 $aMonte Carlo method 606 $aBayesian statistical decision theory 606 $aMarkov processes 606 $aMarkov-processen$2gtt 606 $aMonte Carlo-methode$2gtt 606 $aSimulatiemodellen$2gtt 615 0$aMonte Carlo method. 615 0$aBayesian statistical decision theory. 615 0$aMarkov processes. 615 17$aMarkov-processen. 615 17$aMonte Carlo-methode. 615 17$aSimulatiemodellen. 676 $a519.233 686 $a31.80$2bcl 701 $aKendall$b W. S$0251594 701 $aLiang$b F$g(Faming),$f1970-$0522160 701 $aWang$b J.-S$g(Jian-Sheng),$f1960-$01576916 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910784043403321 996 $aMarkov chain Monte Carlo$93855056 997 $aUNINA