LEADER 03120nam 2200625Ia 450 001 9910783922903321 005 20230617010209.0 010 $a1-281-89691-8 010 $a9786611896911 010 $a981-270-115-X 035 $a(CKB)1000000000334302 035 $a(EBL)296071 035 $a(OCoLC)476063194 035 $a(SSID)ssj0000111314 035 $a(PQKBManifestationID)11143310 035 $a(PQKBTitleCode)TC0000111314 035 $a(PQKBWorkID)10075166 035 $a(PQKB)11253324 035 $a(MiAaPQ)EBC296071 035 $a(WSP)00000016 035 $a(Au-PeEL)EBL296071 035 $a(CaPaEBR)ebr10173922 035 $a(CaONFJC)MIL189691 035 $a(EXLCZ)991000000000334302 100 $a20050907d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBifurcation theory and applications$b[electronic resource] /$fTian Ma, Shouhong Wang 210 $aSingapore ;$aLondon $cWorld Scientific$dc2005 215 $a1 online resource (391 p.) 225 1 $aWorld Scientific series on nonlinear science. Series A ;$vv. 53 300 $aDescription based upon print version of record. 311 $a981-256-352-0 311 $a981-256-287-7 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Chapter 1 Introduction to Steady State Bifurcation Theory; Chapter 2 Introduction to Dynamic Bifurcation; Chapter 3 Reduction Procedures and Stability; Chapter 4 Steady State Bifurcations; Chapter 5 Dynamic Bifurcation Theory: Finite Dimensional Case; Chapter 6 Dynamic Bifurcation Theory: Infinite Dimensional Case; Chapter 7 Bifurcations for Nonlinear Elliptic Equations; Chapter 8 Reaction-Diffusion Equations; Chapter 9 Pattern Formation and Wave Equations; Chapter 10 Fluid Dynamics; Bibliography; Index 330 $aThis book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics. The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation. With this new notio 410 0$aWorld Scientific series on nonlinear science.$nSeries A,$pMonographs and treatises ;$vv. 53. 606 $aBifurcation theory 606 $aDifferential equations, Nonlinear$xNumerical solutions 615 0$aBifurcation theory. 615 0$aDifferential equations, Nonlinear$xNumerical solutions. 676 $a515.392 700 $aMa$b Tian$f1956-$0626838 701 $aWang$b Shouhong$f1962-$0289839 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783922903321 996 $aBifurcation theory and applications$91463651 997 $aUNINA