LEADER 02496nam 2200565 a 450 001 9910783922203321 005 20200520144314.0 010 $a1-281-90576-3 010 $a9786611905767 010 $a981-270-336-5 035 $a(CKB)1000000000334279 035 $a(EBL)296230 035 $a(OCoLC)476064360 035 $a(SSID)ssj0000232546 035 $a(PQKBManifestationID)11226085 035 $a(PQKBTitleCode)TC0000232546 035 $a(PQKBWorkID)10214634 035 $a(PQKB)10606031 035 $a(MiAaPQ)EBC296230 035 $a(WSP)00000236 035 $a(Au-PeEL)EBL296230 035 $a(CaPaEBR)ebr10174101 035 $a(PPN)140370005 035 $a(EXLCZ)991000000000334279 100 $a20050411d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRandom walk in random and non-random environments$b[electronic resource] /$fPa?l Re?ve?sz 205 $a2nd ed. 210 $aHackensack, N.J. $cWorld Scientific$dc2005 215 $a1 online resource (397 p.) 300 $aDescription based upon print version of record. 311 $a981-256-361-X 320 $aIncludes bibliographical references (p. 357-373) and indexes. 327 $aPreface to the First Edition; Preface to the Second Edition; Contents; Introduction; I. SIMPLE SYMMETRIC RANDOM WALK IN Z1; II.SIMPLE SYMMETRIC RANDOM WALK IN Zd; III. RANDOM WALK IN RANDOM ENVIRONMENT; References; Author Index; Subject Index 330 $aThe simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. 606 $aRandom walks (Mathematics) 615 0$aRandom walks (Mathematics) 676 $a519.2/82 700 $aRe?ve?sz$b Pa?l$012634 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783922203321 996 $aRandom walk in random and non-random environments$91491019 997 $aUNINA