LEADER 04271nam 2200649Ia 450 001 9910783918703321 005 20230617040745.0 010 $a1-281-90586-0 010 $a9786611905866 010 $a981-270-350-0 035 $a(CKB)1000000000334409 035 $a(EBL)296224 035 $a(OCoLC)476064296 035 $a(SSID)ssj0000231349 035 $a(PQKBManifestationID)11194880 035 $a(PQKBTitleCode)TC0000231349 035 $a(PQKBWorkID)10207074 035 $a(PQKB)11629661 035 $a(MiAaPQ)EBC296224 035 $a(WSP)00000037 035 $a(Au-PeEL)EBL296224 035 $a(CaPaEBR)ebr10174087 035 $a(CaONFJC)MIL190586 035 $a(EXLCZ)991000000000334409 100 $a20060217d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum mechanics in phase space$b[electronic resource] $ean overview with selected papers /$feditors, Cosmas K. Zachos, David B. Fairlie, Thomas L. Curtright 210 $aNew Jersey ;$aLondon $cWorld Scientific$dc2005 215 $a1 online resource (560 p.) 225 1 $aWorld Scientific series in 20th century physics ;$vv. 34 300 $aDescription based upon print version of record. 311 $a981-238-384-0 320 $aIncludes bibliographical references and index. 327 $aCONTENTS; Preface; Overview of Phase-Space Quantization; References; List of Selected Papers; Index; Quantenmechanik und Gruppentheorie; Die Eiudeutigkeit der Schrodingerschen Operatoren; On the Quantum Correction For Thermodynamic Equilibrium; ON THE PRINCIPLES OF ELEMENTARY QUANTUM MECHANICS; QUANTUM MECHANICS AS A STATISTICAL THEORY; THE EXACT TRANSITION PROBABILITIES O F QUANTUM- MECHANICAL OSCILLATORS CALCULATED BY THE PHASE-SPACE METHOD; The Formulation of Quantum Mechanics in terms of Ensemble in Phase Space'' 327 $aFormulation of Quantum Mechanics Based on the Quasi-Probability Distribution Induced on Phase SpaceThe formulation of quantum mechanics in terms of phase space functions; A NON-NEGATIVE WIGNER-TYPE DISTRIBUTION; Wigner function as the expectation value of a parity operator; Deformation Theory and Quantization; Deformation Theory and Quantization II. Physical Applications; Wigner distribution functions and the representation of canonical transformations in quantum mechanics; Wigner's phase space function and atomic structure; DISTRIBUTION FUNCTIONS IN PHYSICS: FUNDAMENTALS 327 $aCanonical transformation in quantum mechanicsNegative probability; EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORb4ATIONS OF THE POISSON LIE ALGEBRA OF ARBITRARY SYMPLECTIC MANIFOLDS; A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION; Features of time-independent Wigner functions; NEGATIVE PROBABILITY AND UNCERTAINTY RELATIONS; Generating all Wigner functions; Modified spectral method in phase space: Calculation of the Wigner function. I. Fundamentals; Modified spectral method in phase space: Calculation of the Wigner function. II. Generalizations 330 $aWigner's quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence, quantum computing, and quantum chaos. It is also important in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative, formulation of quantum mechanics, independent of the conventional Hilbert space, or path inte 410 0$aWorld Scientific series in 20th century physics ;$vv. 34. 606 $aPhase space (Statistical physics) 606 $aQuantum theory 615 0$aPhase space (Statistical physics) 615 0$aQuantum theory. 676 $a530.12 701 $aZachos$b Cosmas$053007 701 $aFairlie$b David$053006 701 $aCurtright$b Thomas$053005 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783918703321 996 $aQuantum mechanics in phase space$93738957 997 $aUNINA