LEADER 03252nam 2200661Ia 450 001 9910783724303321 005 20230617004721.0 010 $a1-281-88109-0 010 $a9786611881092 010 $a981-256-946-4 035 $a(CKB)1000000000247195 035 $a(EBL)259289 035 $a(OCoLC)475976231 035 $a(SSID)ssj0000121981 035 $a(PQKBManifestationID)11145042 035 $a(PQKBTitleCode)TC0000121981 035 $a(PQKBWorkID)10122482 035 $a(PQKB)11030098 035 $a(MiAaPQ)EBC259289 035 $a(Au-PeEL)EBL259289 035 $a(CaPaEBR)ebr10126029 035 $a(CaONFJC)MIL188109 035 $a(OCoLC)935232530 035 $a(iGPub)WSPCB0000191 035 $a(EXLCZ)991000000000247195 100 $a20050814d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChromatic polynomials and chromaticity of graphs$b[electronic resource] /$fF.M. Dong, K.M. Koh and K.L. Teo 210 $aNew Jersey ;$aHong Kong $cWorld Scientific Pub.$d2005 215 $a1 online resource (386 p.) 300 $aDescription based upon print version of record. 311 $a981-256-383-0 311 $a981-256-317-2 320 $aIncludes bibliographical references (p. 327-352) and index. 327 $aPreface; Contents; Basic Concepts in Graph Theory; Notation; Chapter 1 The Number of -Colourings and Its Enumerations; Chapter 2 Chromatic Polynomials; Chapter 3 Chromatic Equivalence of Graphs; Chapter 4 Chromaticity of Multi-Partite Graphs; Chapter 5 Chromaticity of Subdivisions of Graphs; Chapter 6 Graphs in Which any Two Colour Classes Induce a Tree (I); Chapter 7 Graphs in Which any Two Colour Classes Induce a Tree (II); Chapter 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I); Chapter 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II) 327 $aChapter 10 Chromaticity of Extremal 3-Colourable GraphsChapter 11 Polynomials Related to Chromatic Polynomials; Chapter 12 Real Roots of Chromatic Polynomials; Chapter 13 Integral Roots of Chromatic Polynomials; Chapter 14 Complex Roots of Chromatic Polynomials; Chapter 15 Inequalities on Chromatic Polynomials; Bibliography; Index 330 $aThis is the first book to comprehensively cover chromatic polynomialsof graphs. It includes most of the known results and unsolved problemsin the area of chromatic polynomials. Dividing the book into threemain parts, the authors take readers from the rudiments of chromaticpolynomials to more complex topics: the chromatic equivalence classesof graphs and the zeros and inequalities of chromatic polynomials. 606 $aGraph coloring 606 $aGraph theory 606 $aPolynomials 615 0$aGraph coloring. 615 0$aGraph theory. 615 0$aPolynomials. 676 $a511/.56 700 $aDong$b F. M.$f1962-$01529160 701 $aKoh$b K. M$g(Khee Meng),$f1944-$0629793 701 $aTeo$b K. L$014369 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783724303321 996 $aChromatic polynomials and chromaticity of graphs$93773209 997 $aUNINA