LEADER 00812nam0-22003011i-450 001 990005441280203316 005 20210121181731.0 010 $a0-631-15587-2 035 $a000544128 035 $aUSA01000544128 035 $a(ALEPH)000544128USA01 100 $a20010829d1985----km y1itay5003----ba 101 0 $aeng 102 $aUS 200 1 $aFrontiers of economics$fedited by Kenneth J. Arrow & Seppo Honkapohja 210 $aOxford$cBasil Blackwell$d1985 215 $aVIII, 458 p.$d23 cm 606 0 $aEconomia$2BNCF 676 $a330 702 1$aARROW,$bKenneth. J. 702 1$aHONKAPOHJA,$bSeppo 801 0$aIT$bSOL$c20120104 912 $a990005441280203316 951 $a300 330 ARR$b2546 DISES 959 $aBK 969 $aDISES 996 $aFrontiers of Economics$9460703 997 $aUNISA LEADER 03216nam 22006852 450 001 9910783120503321 005 20160602163859.0 010 $a1-280-41855-9 010 $a9786610418558 010 $a0-511-17888-3 010 $a1-139-14791-9 010 $a0-511-05816-0 010 $a0-511-30602-4 010 $a0-511-54283-6 010 $a0-511-07295-3 035 $a(CKB)1000000000018082 035 $a(EBL)218024 035 $a(OCoLC)171136362 035 $a(SSID)ssj0000248523 035 $a(PQKBManifestationID)11208873 035 $a(PQKBTitleCode)TC0000248523 035 $a(PQKBWorkID)10201818 035 $a(PQKB)10375619 035 $a(UkCbUP)CR9780511542831 035 $a(MiAaPQ)EBC218024 035 $a(Au-PeEL)EBL218024 035 $a(CaPaEBR)ebr10069962 035 $a(CaONFJC)MIL41855 035 $a(PPN)261308769 035 $a(EXLCZ)991000000000018082 100 $a20090505d2003|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSolving polynomial equation systems$h1$iThe Kronecker-Duval philosophy /$fTeo Mora$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2003. 215 $a1 online resource (xiii, 423 pages) $cdigital, PDF file(s) 225 1 $aEncyclopedia of mathematics and its applications ;$v88 300 $aTitle from publisher's bibliographic system (viewed on 31 May 2016). 311 $a0-521-81154-6 320 $aIncludes bibliographical references and index. 327 $a1. The Kronecker-Duval philosophy 330 $aPolynomial equations have been long studied, both theoretically and with a view to solving them. Until recently, manual computation was the only solution method and the theory was developed to accommodate it. With the advent of computers, the situation changed dramatically. Many classical results can be more usefully recast within a different framework which in turn lends itself to further theoretical development tuned to computation. This first book in a trilogy is devoted to the new approach. It is a handbook covering the classical theory of finding roots of a univariate polynomial, emphasising computational aspects, especially the representation and manipulation of algebraic numbers, enlarged by more recent representations like the Duval Model and the Thom Codification. Mora aims to show that solving a polynomial equation really means finding algorithms that help one manipulate roots rather than simply computing them; to that end he also surveys algorithms for factorizing univariate polynomials. 410 0$aEncyclopedia of mathematics and its applications ;$v88. 606 $aEquations$xNumerical solutions 606 $aPolynomials 606 $aIterative methods (Mathematics) 615 0$aEquations$xNumerical solutions. 615 0$aPolynomials 615 0$aIterative methods (Mathematics) 676 $a512.9/4 700 $aMora$b Teo$0451132 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910783120503321 996 $aSolving polynomial equation systems$92710272 997 $aUNINA