LEADER 01102nam0-2200313---450- 001 990009190910403321 005 20100607174340.0 035 $a000919091 035 $aFED01000919091 035 $a(Aleph)000919091FED01 035 $a000919091 100 $a20100528d2006----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $aDalla conservazione alla storia dell'arte$eriflettografia e analisi non invasive per lo studio dei dipinti$fGianluca Poldi,Giovanni Carlo Federico Villa$gcon contributi di Letizia Bonizzoni,Silvia Bruni,Andrea Ficini,Vittoria Guglielmi,Mauro Lucco 210 $aPisa$cEdizioni della Normale$d2006 215 $a615 p.$cill.$d25 cm 610 0 $aPittura,conservazione e restauro 676 $a751.62 700 1$aPoldi,$bGianluca$0508019 701 1$aVilla,$bGiovanni Carlo Federico$0232356 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a990009190910403321 952 $a751.62 POL 1$bS.S.A.88$fFLFBC 959 $aFLFBC 996 $aDalla conservazione alla storia dell'arte$9775613 997 $aUNINA LEADER 03302nam 2200805Ia 450 001 9910782777203321 005 20200520144314.0 010 $a1-282-19699-5 010 $a9786612196997 010 $a3-11-020827-X 024 7 $a10.1515/9783110208276 035 $a(CKB)1000000000691490 035 $a(EBL)364695 035 $a(OCoLC)476197162 035 $a(SSID)ssj0000184556 035 $a(PQKBManifestationID)11182382 035 $a(PQKBTitleCode)TC0000184556 035 $a(PQKBWorkID)10201283 035 $a(PQKB)10962916 035 $a(MiAaPQ)EBC364695 035 $a(DE-B1597)34864 035 $a(OCoLC)1002222246 035 $a(OCoLC)1004866886 035 $a(OCoLC)1011438868 035 $a(OCoLC)979584090 035 $a(OCoLC)987921627 035 $a(OCoLC)992492690 035 $a(OCoLC)999354823 035 $a(DE-B1597)9783110208276 035 $a(Au-PeEL)EBL364695 035 $a(CaPaEBR)ebr10256640 035 $a(CaONFJC)MIL219699 035 $a(PPN)175536872 035 $a(EXLCZ)991000000000691490 100 $a20080616d2008 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIterative regularization methods for nonlinear iII-posed problems$b[electronic resource] /$fBarbara Kaltenbacher, Andreas Neubauer, Otmar Scherzer 210 $aBerlin ;$aNew York $cWalter de Gruyter$dc2008 215 $a1 online resource (204 p.) 225 1 $aRadon series on computational and applied mathematics ;$v6 300 $aDescription based upon print version of record. 311 $a3-11-020420-7 320 $aIncludes bibliographical references and index. 327 $t Frontmatter -- $tContents -- $t1 Introduction -- $t2 Nonlinear Landweber iteration -- $t3 Modified Landweber methods -- $t4 Newton type methods -- $t5 Multilevel methods -- $t6 Level set methods -- $t7 Applications -- $t8 Comments -- $t Backmatter 330 $aNonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods. 410 0$aRadon series on computational and applied mathematics ;$v6. 606 $aDifferential equations, Partial$xImproperly posed problems 606 $aIterative methods (Mathematics) 610 $aIterative Regularization. 610 $aNonlinear Ill-Posed Problems. 610 $aNonlinear Inverse Problems. 615 0$aDifferential equations, Partial$xImproperly posed problems. 615 0$aIterative methods (Mathematics) 676 $a515.7 676 $a620.402/2 686 $aSK 910$2rvk 700 $aKaltenbacher$b Barbara$0981432 701 $aNeubauer$b Andreas$01547599 701 $aScherzer$b Otmar$f1964-$067379 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782777203321 996 $aIterative regularization methods for nonlinear iII-posed problems$93804065 997 $aUNINA