LEADER 03724nam 22006732 450 001 9910782684803321 005 20151005020622.0 010 $a1-107-20202-7 010 $a0-511-47999-9 010 $a1-282-00165-5 010 $a9786612001659 010 $a0-511-48079-2 010 $a0-511-47759-7 010 $a0-511-47614-0 010 $a0-511-80165-3 010 $a0-511-47911-5 035 $a(CKB)1000000000702613 035 $a(EBL)412737 035 $a(OCoLC)437089878 035 $a(SSID)ssj0000103004 035 $a(PQKBManifestationID)11132811 035 $a(PQKBTitleCode)TC0000103004 035 $a(PQKBWorkID)10061422 035 $a(PQKB)11383120 035 $a(UkCbUP)CR9780511801655 035 $a(WaSeSS)IndRDA00019027 035 $a(Au-PeEL)EBL412737 035 $a(CaPaEBR)ebr10277515 035 $a(CaONFJC)MIL200165 035 $a(MiAaPQ)EBC412737 035 $a(PPN)145099431 035 $a(EXLCZ)991000000000702613 100 $a20101021d2009|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalytic combinatorics /$fPhilippe Flajolet & Robert Sedgewick$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2009. 215 $a1 online resource (xiii, 810 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-139-63784-3 311 $a0-521-89806-4 320 $aIncludes bibliographical references (p. 779-800) and index. 327 $aSymbolic methods -- Combinatorial structures and ordinary generating functions -- Labelled structures and exponential generating functions -- Combinatorial parameters and multivariate generating functions -- Complex asymptotics -- Complex analysis, rational and meromorphic asymptotics -- Applications of rational and meromorphic asymptotics -- Singularity analysis of generating functions -- Applications of singularity analysis -- Saddle-point asymptotics -- Random structures -- Multivariate asymptotics and limit laws -- Appendix A : Auxiliary elementary notions -- Appendix B : Basic complex analysis -- Appendix C : Concepts of probability theory. 330 $aAnalytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study. 606 $aCombinatorial analysis 615 0$aCombinatorial analysis. 676 $a511.6 686 $a31.12$2bcl 700 $aFlajolet$b Philippe$062293 702 $aSedgewick$b Robert$f1946- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910782684803321 996 $aAnalytic combinatorics$93686478 997 $aUNINA