LEADER 03972nam 22006732 450 001 9910782616003321 005 20151005020622.0 010 $a1-107-19545-4 010 $a1-282-05829-0 010 $a9786612058295 010 $a0-511-50750-X 010 $a0-511-50816-6 010 $a0-511-50430-6 010 $a0-511-50882-4 010 $a0-511-57515-7 010 $a0-511-50644-9 035 $a(CKB)1000000000719049 035 $a(EBL)424526 035 $a(OCoLC)437110015 035 $a(SSID)ssj0000114004 035 $a(PQKBManifestationID)11129935 035 $a(PQKBTitleCode)TC0000114004 035 $a(PQKBWorkID)10124167 035 $a(PQKB)10508528 035 $a(UkCbUP)CR9780511575150 035 $a(Au-PeEL)EBL424526 035 $a(CaPaEBR)ebr10289492 035 $a(CaONFJC)MIL205829 035 $a(MiAaPQ)EBC424526 035 $a(PPN)26127953X 035 $a(EXLCZ)991000000000719049 100 $a20090522d2009|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBose-condensed gases at finite temperatures /$fAllan Griffin, Tetsuro Nikuni, Eugene Zaremba$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2009. 215 $a1 online resource (xi, 462 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-83702-2 320 $aIncludes bibliographical references (p. 451-458) and index. 327 $aCondensate dynamics at T = 0 -- Coupled equations for the condensate and thermal cloud -- Green's functions and self-energy approximations -- The Beliaev and the time-dependent HFB approximations -- Kadanoff-Baym derivation of the ZNG equations -- Kinetic equation for Bogoliubov thermal excitations -- Static thermal cloud approximation -- Vortices and vortex lattices at finite temperatures -- Dynamics at finite temperatures using the moment method -- Numerical simulation of the ZNG equations -- Simulation of collective modes at finite temperature -- Landau damping in trapped Bose-condensed gases -- Landau's theory of superfluidity -- Two-fluid hydrodynamics in a dilute Bose gas -- Variational formulation of the Landau two-fluid equations -- The Landau-Khalatnikov two-fluid equations -- Transport coefficients and relaxation times -- General theory of damping of hydrodynamic modes. 330 $aThe discovery of Bose-Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first treatment of BEC at finite temperatures, this book presents a thorough account of the theory of two-component dynamics and nonequilibrium behaviour in superfluid Bose gases. It uses a simplified microscopic model to give a clear, explicit account of collective modes in both the collisionless and collision-dominated regions. Major topics such as kinetic equations, local equilibrium and two-fluid hydrodynamics are introduced at an elementary level. Explicit predictions are worked out and linked to experiments. Providing a platform for future experimental and theoretical studies on the finite temperature dynamics of trapped Bose gases, this book is ideal for researchers and graduate students in ultracold atom physics, atomic, molecular and optical physics and condensed matter physics. 606 $aBose-Einstein condensation 606 $aBose-Einstein gas 615 0$aBose-Einstein condensation. 615 0$aBose-Einstein gas. 676 $a530.42 700 $aGriffin$b Allan$052917 702 $aNikuni$b Tetsuro 702 $aZaremba$b Eugene$f1946- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910782616003321 996 $aBose-condensed gases at finite temperatures$93849103 997 $aUNINA LEADER 02188nam0 22004693i 450 001 VAN0261163 005 20231006114307.892 017 70$2N$a9783540348634 100 $a20230711d1979 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aEquational Compactness in Rings$eWith Applications to the Theory of Topological Rings$fDavid K. Haley 210 $aBerlin$cSpringer$d1979 215 $aiii, 167 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v745 606 $a16-XX$xAssociative rings and algebras [MSC 2020]$3VANC019734$2MF 606 $a16P10$xFinite rings and finite-dimensional associative algebras [MSC 2020]$3VANC022013$2MF 606 $a13Jxx$xTopological rings and modules [MSC 2020]$3VANC022353$2MF 606 $a16P60$xChain conditions on annihilators and summands: Goldie-type conditions, Krull dimension (associative rings and algebras) [MSC 2020]$3VANC023711$2MF 606 $a03C60$xModel-theoretic algebra [MSC 2020]$3VANC023964$2MF 606 $a13Lxx$xApplications of logic to commutative algebra [MSC 2020]$3VANC028775$2MF 606 $a16W80$xTopological and ordered rings and modules [MSC 2020]$3VANC037379$2MF 610 $aCompactification$9KW:K 610 $aCompactness$9KW:K 610 $aEquations$9KW:K 610 $aFrame$9KW:K 610 $aMinimum$9KW:K 610 $aModels$9KW:K 610 $aRings$9KW:K 610 $aTopological rings$9KW:K 620 $dBerlin$3VANL000066 700 1$aHaley$bDavid K.$3VANV215396$058978 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0062801$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0261163 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 6198 $e08eMF6198 20230725 996 $aEquational compactness in rings$980752 997 $aUNICAMPANIA