LEADER 03068nam 2200661Ia 450 001 9910782597303321 005 20230721033326.0 010 $a6611786163 010 $a1-281-78616-0 010 $a9786611786168 010 $a1-4356-8012-X 010 $a600-00-0634-9 010 $a1-60750-325-5 035 $a(CKB)1000000000554435 035 $a(EBL)363204 035 $a(OCoLC)437229110 035 $a(SSID)ssj0000171011 035 $a(PQKBManifestationID)11165008 035 $a(PQKBTitleCode)TC0000171011 035 $a(PQKBWorkID)10236450 035 $a(PQKB)11626386 035 $a(MiAaPQ)EBC363204 035 $a(Au-PeEL)EBL363204 035 $a(CaPaEBR)ebr10267462 035 $a(CaONFJC)MIL178616 035 $a(EXLCZ)991000000000554435 100 $a20080407d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHigher-dimensional geometry over finite fields$b[electronic resource] /$fedited by Dmitry Kaledin and Yuri Tschinkel 210 $aAmsterdam, Netherlands ;$aWashington, DC $cIOS Press$dc2008 215 $a1 online resource (356 p.) 225 0 $aNATO science for peace and security series. Sub-series D, Information and communication security,$x1874-6268 ;$vv. 16 300 $aDescription based upon print version of record. 311 $a1-58603-855-9 320 $aIncludes bibliographical references and index. 327 $aTitle page; Preface; Contents; Finite Field Experiments; K3 Surfaces of Picard Rank One Which Are Double Covers of the Projective Plane; Beilinson Conjectures in the Non-Commutative Setting; Looking for Rational Curves on Cubic Hypersurfaces; Abelian Varieties over Finite Fields; How to Obtain Global Information from Computations over Finite Fields; Geometry of Shimura Varieties of Hodge Type over Finite Fields; Lectures on Zeta Functions over Finite Fields; De Rham Cohomology of Varieties over Fields of Positive Characteristic; Homomorphisms of Abelian Varieties over Finite Fields 327 $aAuthor Index 330 $aNumber systems based on a finite collection of symbols, such as the 0s and 1s of computer circuitry, are ubiquitous in the modern age. Finite fields are the important number systems. This title introduces the reader to the developments in algebraic geometry over finite fields. 410 0$aNATO Science for Peace and Security Series: Information and Communication Security, v. 16 606 $aFinite fields (Algebra)$vCongresses 606 $aGeometry, Algebraic$vCongresses 615 0$aFinite fields (Algebra) 615 0$aGeometry, Algebraic 676 $a512/.3 701 $aKaledin$b Dmitri$01560706 701 $aTschinkel$b Yuri$066537 712 12$aNATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782597303321 996 $aHigher-dimensional geometry over finite fields$93826877 997 $aUNINA