LEADER 03656nam 2200637 a 450 001 9910782544003321 005 20200520144314.0 010 $a1-281-95720-8 010 $a9786611957209 010 $a0-226-38872-7 024 7 $a10.7208/9780226388724 035 $a(CKB)1000000000577910 035 $a(EBL)408178 035 $a(OCoLC)476227783 035 $a(SSID)ssj0000101295 035 $a(PQKBManifestationID)11111481 035 $a(PQKBTitleCode)TC0000101295 035 $a(PQKBWorkID)10042132 035 $a(PQKB)10231646 035 $a(StDuBDS)EDZ0000122940 035 $a(MiAaPQ)EBC408178 035 $a(DE-B1597)523983 035 $a(OCoLC)309232677 035 $a(DE-B1597)9780226388724 035 $a(Au-PeEL)EBL408178 035 $a(CaPaEBR)ebr10265906 035 $a(CaONFJC)MIL195720 035 $a(EXLCZ)991000000000577910 100 $a20071029d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAll the names of the Lord$b[electronic resource] $elists, mysticism, and magic /$fValentina Izmirlieva 210 $aChicago $cUniversity of Chicago Press$d2008 215 $a1 online resource (252 p.) 225 1 $aStudies of the Harriman Institute 300 $aDescription based upon print version of record. 311 $a0-226-38870-0 320 $aIncludes bibliographical references (p. 207-224) and index. 327 $tFrontmatter -- $tContents -- $tAcknowledgments -- $tIntroduction -- $tPart One: The Claim of Theology: "Nameless and of Every Name" -- $tPart Two: A Magical Alternative: The 72 Names of God -- $tEpilogue -- $tNotes -- $tBibliography -- $tIndex 330 $aChristians face a conundrum when it comes to naming God, for if God is unnamable, as theologians maintain, he can also be called by every name. His proper name is thus an open-ended, all-encompassing list, a mystery the Church embraces in its rhetoric, but which many Christians have found difficult to accept. To explore this conflict, Valentina Izmirlieva examines two lists of God's names: one from The Divine Names, the classic treatise by Pseudo-Dionysius, and the other from The 72 Names of the Lord, an amulet whose history binds together Kabbalah and Christianity, Jews and Slavs, Palestine, Provence, and the Balkans. This unexpected juxtaposition of a theological treatise and a magical amulet allows Izmirlieva to reveal lists' rhetorical potential to create order and to function as both tools of knowledge and of power. Despite the two different visions of order represented by each list, Izmirlieva finds that their uses in Christian practice point to a complementary relationship between the existential need for God's protection and the metaphysical desire to submit to his infinite majesty-a compelling claim sure to provoke discussion among scholars in many fields. 410 0$aStudies of the Harriman Institute. 606 $aGod (Christianity)$xName 610 $adivinity, god, mysticism, spirituality, religion, magic, christianity, dionysius the areopagite, myth, authorship, kabbalah, 72 names, naming, bible, hierarchy, nameless, exegesis, scripture, apostle, tower of babel, septuagint, printing, miscellany for travelers, abagar, judaism, nonfiction, metaphysics, balkans, palestine, provence, history. 615 0$aGod (Christianity)$xName. 676 $a231 700 $aIzmirlieva$b Valentina$01528796 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782544003321 996 $aAll the names of the Lord$93772647 997 $aUNINA LEADER 12094nam 22005773 450 001 9910768495103321 005 20240220084505.0 035 $a(CKB)5580000000694909 035 $a(MiAaPQ)EBC30752877 035 $a(Au-PeEL)EBL30752877 035 $a(OCoLC)1423211754 035 $a(Exl-AI)30752877 035 $a(EXLCZ)995580000000694909 100 $a20240220d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgal Systems for Resource Recovery from Waste and Wastewater 205 $a1st ed. 210 1$aLondon :$cIWA Publishing,$d2023. 210 4$dİ2023. 215 $a1 online resource (266 pages) 225 1 $aIntegrated Environmental Technology Series 311 08$a9781789063530 311 08$a1789063531 311 08$a9781789063554 311 08$a1789063558 327 $aIntro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 : Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 : Metabolic modelling of microalgae for wastewater treatment -- 2.1 ? Introduction -- 2.2 ? Main Metabolic Pathways -- 2.2.1 ? Photosynthesis -- 2.2.2 ? Glycolysis and pentose phosphate pathway -- 2.2.3 ? Tricarboxylic acid cycle -- 2.2.4 ? Glyoxylate shunt -- 2.2.5 ? Lipid biosynthesis -- 2.3 ? Genome-Scale Metabolic Models -- 2.4 ? Modelling Metabolic Networks -- 2.5 ? Tools for Steady-State Conditions -- 2.5.1 ? Elementary flux modes -- 2.5.1.1 ? Mathematical construction of EFMs -- 2.5.1.2 ? Minimal generating sets and EFM reduction -- 2.5.2 ? Flux balance analysis -- 2.6 ? Metabolic Networks Reduction -- 2.6.1 ? The DRUM framework -- 2.7 ? Case Study: Microalgae Cultivation -- 2.7.1 ? Introduction: volatile fatty acid -- 2.7.2 ? Determination of the subnetworks and accumulating metabolites -- 2.7.3 ? Derivation of MR -- 2.7.4 ? Choice of kinetic model -- 2.7.5 ? Model calibration and validation -- 2.7.6 ? Example of application: optimization of waste treatment time -- 2.8 ? Conclusion -- References -- Chapter 3 : Wastewater treatment using microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1 ? Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2 ? Interactions within microalgal-bacterial consortia -- 3.1.3 ? Nutrient removal by microalgal-bacterial consortia -- 3.1.4 ? Microalgal-bacterial systems and configurations. 327 $a3.1.5 ? Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1 ? Light -- 3.1.5.2 ? pH -- 3.1.5.3 ? Hydraulic retention time -- 3.1.5.4 ? Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1 ? Advantages on ammonium removal rates -- 3.2.2 ? Operational conditions and area requirement -- 3.2.3 ? Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 : Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1 ? Green algae -- 4.2.2 ? Brown algae -- 4.2.2.1 ? Laminaria sp. -- 4.2.2.2 ? Sargassum sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1 ? Biogas -- 4.4.2 ? Biohydrogen -- 4.4.3 ? Biohythane -- 4.4.4 ? Bioethanol and biobutanol -- 4.4.4.1 ? Acetone-butanol-ethanol fermentation -- 4.4.4.2 ? Biobutanol -- 4.4.4.3 ? Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1 ? Biorefinery concepts -- 4.5.2 ? Key processes -- 4.5.2.1 ? Anaerobic digestion -- 4.5.2.2 ? Reactor design -- 4.5.3 ? Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 : Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1 ? Biology of microalgae-bacteria consortia -- 5.2.2 ? Engineering of photobioreactors -- 5.2.3 ? Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1 ? Improvement of biological systems. 327 $a5.3.2 ? Allocation and implementation of large-scale facilities -- 5.3.3 ? Optimal operation of processes -- 5.3.4 ? Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1 ? Improvement of sustainability of wastewater treatment -- 5.4.2 ? Distributed wastewater treatment -- 5.4.3 ? Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 : Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the Microalgae-Methanotroph Cocultures -- 6.3.1 ? Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2 ? Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1 ? Choice of a suitable biocatalyst -- 6.5.2 ? Coculture tolerance to contaminants in raw biogas -- 6.5.3 ? Freshwater consumption required by wastewater treatment -- 6.5.4 ? Pretreatment of AD effluent -- 6.5.5 ? Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other Technologies -- Chapter 7 : Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1 ? Algae as primary producers -- 7.2.2 ? Algae metabolism -- 7.2.3 ? Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs. 327 $a7.3.1 ? Algal species tested in MFC cathode compartment -- 7.3.2 ? Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1 ? Dual chambers vs sediment MFCs -- 7.4.2 ? Construction materials, electrolytes, electrodes and separators -- 7.4.3 ? Electrode materials -- 7.4.4 ? Separators -- 7.4.5 ? Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 : Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1 ? Liquid effluent -- 8.2.2 ? Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1 ? AD of microalgae -- 8.3.2 ? Pretreatment of microalgal biomass -- 8.3.3 ? Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1 ? Biorefinery based on integrated microalgae and AD technologies -- 8.5.2 ? Environmental impacts of integrated microalgae and AD technologies -- 8.5.3 ? Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 : Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1 ? Biodiesel production process -- 9.3.2 ? Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1 ? Bioethanol production process -- 9.4.2 ? Hydrolysis -- 9.4.3 ? Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology. 327 $aChapter 10 : Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1 ? Cosmetics -- 10.3.2 ? Pharmaceuticals -- 10.3.3 ? Food supplements -- 10.3.3.1 ? Protein content of algae -- 10.3.3.2 ? Single-cell protein -- 10.3.3.3 ? Carbohydrates -- 10.3.3.4 ? Lipids -- 10.3.3.5 ? Vitamins -- 10.3.3.6 ? Minerals -- 10.3.4 ? Agricultural products -- 10.3.4.1 ? Biofertilizer/biostimulants -- 10.3.4.2 ? Plant growth-promoting substances/hormones -- 10.3.4.3 ? Biopesticides -- 10.3.5 ? Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 : Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1 ? Cultivation conditions -- 11.3.1.1 ? Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2 ? Nutrient availability -- 11.3.1.3 ? Light -- 11.3.1.4 ? Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2 ? Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3 ? PHA blends -- 11.3.3.1 ? PHA blends with raw materials -- 11.3.3.2 ? PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1 ? Harvesting -- 11.4.1.1 ? Centrifugation -- 11.4.1.2 ? Filtration -- 11.4.1.3 ? Flocculation and coagulation -- 11.4.1.4 ? Gravity sedimentation -- 11.4.1.5 ? Flotation -- 11.4.2 ? Drying -- 11.4.3 ? Extraction -- 11.5 Challenges and Future Perspectives. 327 $a11.6 Conclusion. 330 $aThis book explores the utilization of algal systems for resource recovery from waste and wastewater, providing comprehensive insights into existing technologies and advancements in the field. Topics covered include process fundamentals of algae-based wastewater treatment, metabolic modeling, and algae-bacteria interactions. The book also addresses the challenges and engineering solutions for wastewater treatment, and presents case studies on coculturing microalgae with methanotrophs for enhanced nutrient recovery. It discusses the valorization of algae-based processes through integration with technologies like anaerobic digestion and biogas upgrading. Intended for undergraduate and graduate students in environmental sciences, the book is also valuable for researchers, engineers, and policy makers interested in algal systems for waste management.$7Generated by AI. 410 0$aIntegrated Environmental Technology Series 606 $aLand treatment of wastewater$7Generated by AI 606 $aResource recovery facilities$7Generated by AI 615 0$aLand treatment of wastewater 615 0$aResource recovery facilities 676 $a628.35 700 $aLens$b P. N. L$g(Piet N. L.)$0308358 701 $aKhandelwal$b Amitap$01592487 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910768495103321 996 $aAlgal Systems for Resource Recovery from Waste and Wastewater$93910324 997 $aUNINA