LEADER 03555nam 22007214a 450 001 9910782523403321 005 20200520144314.0 010 $a1-282-19434-8 010 $a9786612194344 010 $a3-11-019809-6 024 7 $a10.1515/9783110198096 035 $a(CKB)1000000000688549 035 $a(EBL)314057 035 $a(OCoLC)270933131 035 $a(SSID)ssj0000217517 035 $a(PQKBManifestationID)11198558 035 $a(PQKBTitleCode)TC0000217517 035 $a(PQKBWorkID)10202855 035 $a(PQKB)11314695 035 $a(MiAaPQ)EBC314057 035 $a(DE-B1597)32328 035 $a(OCoLC)979761462 035 $a(DE-B1597)9783110198096 035 $a(Au-PeEL)EBL314057 035 $a(CaPaEBR)ebr10194843 035 $a(CaONFJC)MIL219434 035 $a(OCoLC)935264337 035 $z(PPN)175563764 035 $a(PPN)140490396 035 $a(EXLCZ)991000000000688549 100 $a20020729d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPainleve? differential equations in the complex plane$b[electronic resource] /$fValerii I. Gromak, Ilpo Laine, Shun Shimomura 205 $aReprint 2013 210 $aBerlin ;$aNew York $cWalter de Gruyter$dc2002 215 $a1 online resource (312 p.) 225 1 $aDe Gruyter studies in mathematics ;$v28 300 $aDescription based upon print version of record. 311 $a3-11-017379-4 320 $aIncludes bibliographical references (p. [283]-299) and index. 327 $t Frontmatter -- $tContents -- $tChapter 1. Meromorphic nature of solutions -- $tChapter 2. Growth of Painlevé transcendents -- $tChapter 3. Value distribution of Painlevé transcendents -- $tChapter 4. The first Painlevé equation (P1) -- $tChapter 5. The second Painlevé equation (P2) -- $tChapter 6. The fourth Painlevé equation (P4) -- $tChapter 7. The third Painlevé equation (P3) -- $tChapter 8. The fifth Painlevé equation (P5) -- $tChapter 9. The sixth Painlevé equation (P6) -- $tChapter 10. Applications of Painlevé equations -- $tAppendix A. Local existence and uniqueness of solutions of complex differential equations -- $tAppendix B. Basic notations and facts in the Nevanlinna theory -- $t Backmatter 330 $aThis book is the first comprehensive treatment of Painleve? differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution of Painleve? transcendents. The subsequent main part of the book is devoted to topics of classical background such as representations and expansions of solutions, solutions of special type like rational and special transcendental solutions, Ba?cklund transformations and higher order analogues, treated 410 0$aGruyter studies in mathematics ;$v28. 606 $aPainleve? equations 606 $aFunctions of complex variables 615 0$aPainleve? equations. 615 0$aFunctions of complex variables. 676 $a515/.352 686 $aSK 520$2rvk 700 $aGromak$b V. I$g(Valerii? Ivanovich)$0451352 701 $aLaine$b Ilpo$0451344 701 $aShimomura$b Shun$01489232 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782523403321 996 $aPainleve? differential equations in the complex plane$93709855 997 $aUNINA