LEADER 02979nam 2200649 a 450 001 9910782482803321 005 20200520144314.0 010 $a1-383-03593-8 010 $a1-281-82550-6 010 $a9786611825508 010 $a0-19-155139-2 035 $a(CKB)1000000000556120 035 $a(EBL)415082 035 $a(OCoLC)276222156 035 $a(SSID)ssj0000182939 035 $a(PQKBManifestationID)11170879 035 $a(PQKBTitleCode)TC0000182939 035 $a(PQKBWorkID)10172313 035 $a(PQKB)11725191 035 $a(Au-PeEL)EBL415082 035 $a(CaPaEBR)ebr10254375 035 $a(CaONFJC)MIL182550 035 $a(Au-PeEL)EBL7035241 035 $a(PPN)153970588 035 $a(MiAaPQ)EBC415082 035 $a(EXLCZ)991000000000556120 100 $a20080128d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 13$aAn introduction to stochastic filtering theory$b[electronic resource] /$fJie Xiong 210 $aOxford ;$aNew York $cOxford University Press$d2008 215 $a1 online resource (285 p.) 225 1 $aOxford graduate texts in mathematics ;$v18 300 $aDescription based upon print version of record. 311 $a0-19-921970-2 320 $aIncludes bibliographical references (p. [255]-265) and index. 327 $aContents; 1 Introduction; 2 Brownian motion and martingales; 3 Stochastic integrals and Ito?'s formula; 4 Stochastic differential equations; 5 Filtering model and Kallianpur-Striebel formula; 6 Uniqueness of the solution for Zakai's equation; 7 Uniqueness of the solution for the filtering equation; 8 Numerical methods; 9 Linear filtering; 10 Stability of non-linear filtering; 11 Singular filtering; Bibliography; List of Notations; Index 330 $aStochastic filtering theory is a field that has seen a rapid development in recent years and this book, aimed at graduates and researchers in applied mathematics, provides an accessible introduction covering recent developments. - ;Stochastic Filtering Theory uses probability tools to estimate unobservable stochastic processes that arise in many applied fields including communication, target-tracking, and mathematical finance. As a topic, Stochastic Filtering Theory has progressed rapidly in recent years. For example, the (branching) particle system representation of the optimal filter has bee 410 0$aOxford graduate texts in mathematics ;$v18. 606 $aStochastic processes 606 $aFilters (Mathematics) 606 $aPrediction theory 615 0$aStochastic processes. 615 0$aFilters (Mathematics) 615 0$aPrediction theory. 676 $a519.2/3 700 $aXiong$b Jie$0736517 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782482803321 996 $aAn introduction to stochastic filtering theory$93697029 997 $aUNINA