LEADER 05107nam 2200637Ia 450 001 9910782479403321 005 20230721003730.0 010 $a1-281-96089-6 010 $a9786611960896 010 $a981-281-205-9 035 $a(CKB)1000000000556729 035 $a(OCoLC)551762896 035 $a(CaPaEBR)ebrary10686047 035 $a(SSID)ssj0000306025 035 $a(PQKBManifestationID)11239237 035 $a(PQKBTitleCode)TC0000306025 035 $a(PQKBWorkID)10293743 035 $a(PQKB)11100421 035 $a(MiAaPQ)EBC3050949 035 $a(WSP)00000354 035 $a(Au-PeEL)EBL3050949 035 $a(CaPaEBR)ebr10686047 035 $a(CaONFJC)MIL196089 035 $a(OCoLC)922951774 035 $a(EXLCZ)991000000000556729 100 $a20070216d2008 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe physics and modeling of MOSFETS$b[electronic resource] $esurface-potential model HiSIM /$fMitiko Miura-Mattausch, Hans Jurgen Mattausch, Tatsuya Ezaki 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (378 p.) 225 1 $aInternational series on advances in solid state electronics and technology 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-256-864-6 320 $aIncludes bibliographical references and index. 327 $a1. Semiconductor device physics. 1.1. Band structure concept. 1.2. Carrier density and fermi level in semiconductors. 1.3. P-N junction. 1.4. Device simulation. 1.5. Summary of equations and symbols presented in chapter 1 for semiconductor device physics -- 2. Basic compact surface-potential model of the MOSFET. 2.1. Compact modeling concept. 2.2. Device structure parameters of the MOSFET. 2.3. Surface potentials. 2.4. Charge densities. 2.5. Drain current. 2.6. Summary of equations and model parameters presented in chapter 2 for basic compact surface-potential model of the MOSFET -- 3. Advanced MOSFET phenomena modeling. 3.1. Threshold voltage shift. 3.2. Depletion effect of the poly-si gate. 3.3. Quantum-mechanical effects. 3.4. Mobility model. 3.5. Channel-length modulation. 3.6. Narrow-channel effects. 3.7. Effects of the length of the diffused source/drain contacts in Shallow-Trench Isolation (STI) technologies. 3.8. Temperature dependences. 3.9. Conservation of symmetry at V[symbol] = 0. 3.10. Harmonic distortions. 3.11. Summary of equations and model parameters appearing in chapter 3 for advanced MOSFET phenomena modeling -- 4. Capacitances. 4.1. Intrinsic capacitances. 4.2. Overlap capacitances. 4.3. Longitudinal (lateral) -field-induced capacitance. 4.4. Fringing capacitance. 4.5. Summary of equations and model parameters appearing in chapter 4 for capacitances -- 5. Leakage currents and junction diode. 5.1. Leakage currents. 5.2. Bulk/source and bulk/drain junction models. 5.3. Summary of equations and model parameters appeared in chapter 5 for leakage currents and junction diode -- 6. Modeling of phenomena important for RF applications. 6.1. Noise models. 6.2. Non-Quasi-Static (NQS) model. 6.3. External MOS transistor resistances. 6.4. Summary of equations and model parameters appeared in chapter 6 for modeling of phenomena important for RF applications -- 7. Summary of HiSIM's model equations, parameters, and parameter-extraction method. 7.1. Model equations of HiSIM. 7.2. Model flags and exclusion of modeled effects. 7.3. Model parameters and their meaning. 7.4. Default values of the model parameter. 7.5. Parameter extraction method. 330 $aThis volume provides a timely description of the latest compact MOS transistor models for circuit simulation. The first generation BSIM3 and BSIM4 models that have dominated circuit simulation in the last decade are no longer capable of characterizing all the important features of modern sub-100nm MOS transistors. This book discusses the second generation MOS transistor models that are now in urgent demand and being brought into the initial phase of manufacturing applications. It considers how the models are to include the complete drift-diffusion theory using the surface potential variable in the MOS transistor channel in order to give one characterization equation. 410 0$aInternational series on advances in solid state electronics and technology. 606 $aMetal oxide semiconductor field-effect transistors 606 $aMetal oxide semiconductor field-effect transistors$xMathematical models 615 0$aMetal oxide semiconductor field-effect transistors. 615 0$aMetal oxide semiconductor field-effect transistors$xMathematical models. 676 $a621.3815/284015118 700 $aMiura-Mattausch$b Mitiko$f1949-$0502115 701 $aMattausch$b Hans Jurgen$01480374 701 $aEzaki$b Tatsuya$01480375 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782479403321 996 $aThe physics and modeling of MOSFETS$93696998 997 $aUNINA