LEADER 01167nam--2200337---450- 001 990003597000203316 005 20111125112142.0 035 $a000359700 035 $aUSA01000359700 035 $a(ALEPH)000359700USA01 035 $a000359700 100 $a20111125d2002----km-y0itay50------ba 105 $aa---||||001yy 200 1 $aUn'opera d'arte rinascimentale a Serre$eil tabernacolo eucaristico nella Chiesa di S. Martino vescovo$fGerardo Pecci 210 $aPostiglione$c[s. n.]$d2002 215 $a49-80 p, [4] carte di tav.$cill.$d25 cm 225 2 $aQuaderni Arci Postiglione 300 $aEstratto da: Il Postiglione, 2002 , n. 15 410 0$12001$aQuaderni Arci Postiglione 607 $aSerre$xChiesa di S. Martino$xTabernacoli$2BNCF 676 $a704.948 700 1$aPECCI,$bGerardo$0508454 801 0$aIT$bsalbc$gISBD 912 $a990003597000203316 951 $aXIV Misc..11-12. 2$b222338 L.M.$cXIV Misc..11-12.$d00268649 959 $aBK 969 $aUMA 979 $aIANNONE$b90$c20111125$lUSA01$h1114 979 $aIANNONE$b90$c20111125$lUSA01$h1121 996 $aUn'opera d'arte rinascimentale a Serre$91135389 997 $aUNISA LEADER 05590nam 2200685Ia 450 001 9910782357403321 005 20230721033026.0 010 $a1-281-93434-8 010 $a9786611934347 010 $a981-279-405-0 035 $a(CKB)1000000000549533 035 $a(EBL)1193153 035 $a(SSID)ssj0000292343 035 $a(PQKBManifestationID)11237016 035 $a(PQKBTitleCode)TC0000292343 035 $a(PQKBWorkID)10269176 035 $a(PQKB)10355065 035 $a(MiAaPQ)EBC1193153 035 $a(WSP)00001767 035 $a(Au-PeEL)EBL1193153 035 $a(CaPaEBR)ebr10698842 035 $a(CaONFJC)MIL193434 035 $a(OCoLC)820944486 035 $a(EXLCZ)991000000000549533 100 $a20080319d2008 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputational prospects of infinity$b[electronic resource] $hPart I$iTutorials /$feditors, Chitat Chong ... [et al.] 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (264 p.) 225 1 $aLecture notes series / Institute for Mathematical Sciences, National University of Singapore ;$vv. 14 300 $aDescription based upon print version of record. 311 $a981-279-653-3 320 $aIncludes bibliographical references. 327 $aCONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ?of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures 327 $a3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4.