LEADER 05761nam 2200697Ia 450 001 9910782276503321 005 20230607222155.0 010 $a1-281-95628-7 010 $a9786611956288 010 $a981-281-062-5 035 $a(CKB)1000000000538101 035 $a(EBL)1679509 035 $a(SSID)ssj0000200049 035 $a(PQKBManifestationID)11173086 035 $a(PQKBTitleCode)TC0000200049 035 $a(PQKBWorkID)10215548 035 $a(PQKB)10082624 035 $a(MiAaPQ)EBC1679509 035 $a(WSP)00004422 035 $a(Au-PeEL)EBL1679509 035 $a(CaPaEBR)ebr10255768 035 $a(CaONFJC)MIL195628 035 $a(OCoLC)879023496 035 $a(EXLCZ)991000000000538101 100 $a20010313d2001 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMechanical and thermodynamical modeling of fluid interfaces$b[electronic resource] /$fRene?e Gatignol, Roger Prud'homme 210 $aSingapore ;$aRiver Edge, N.J. $cWorld Scientific$d2001 215 $a1 online resource (273 p.) 225 1 $aSeries on advances in mathematics for applied sciences ;$vv. 58 300 $aDescription based upon print version of record. 311 $a981-02-4305-7 320 $aIncludes bibliographical references (p. 239-248). 327 $aPREFACE; CONTENTS; LIST OF SYMBOLS; 1. INTRODUCTION; 1.1. The concept of an ""interface""; 1.2. The concept of an ""interfacial layer""; 1.3. Presentation of the volume; 2. THERMODYNAMICS AND KINEMATICS OF INTERFACES; 2.1. Definition of surfaces; 2.2. Interfacial quantities; 2.3. Thermodynamic relations; 2.3.1. The bulk; 2.3.2. The interface; 2.3.3. Thermodynamic equilibrium between two phases at rest; 2.3.4. Surface tension out of equilibrium; 2.4. Velocities and deformation rates of the interface; 2.4.1. Material velocities in the bulk; 2.4.2. Interfacial velocities in intrinsic description 327 $a2.4.3. Velocities in orthogonal curvilinear coordinates2.4.4. Strain rates; 2.4.5. Transport theorem for a curvilinear integral; 2.4.6. Transport theorem for a surface integral; 2.4.7. Divergence theorem on a surface; 2.4.8. Interfacial fluxes; 2.5. Examples; 2.5.1. Effect of curvature on surface integrals; 2.5.2. Parallel curves; 2.5.3. Parallel surfaces; 2.5.4. Effect of curvature on lateral surface integrals in the case of parallel surfaces; 2.5.5. Effect of curvature on equilibrium surface tension; 2.5.6. Determination of the mean normal curvature; 2.5.7. Deformation along a surface 327 $a2.5.8. Stretch of a moving cylinder2.5.9. Stretch of a planar flame; 3. INTERFACE BALANCE LAWS; 3.1. General interface balance law; 3.1.1. Balance law for the three-dimensional continuum; 3.1.2. First integration method of the local balance laws for the three-dimensional continuum; 3.1.3. Second integration method of the balance laws for the three-dimensional continuum; 3.1.4. Some comments; 3.2. Interface balance laws for species, mass, momentum and energy; 3.2.1. Interface balance laws for species; 3.2.2. Interface balance law for mass; 3.2.3. Momentum interface balance law 327 $a3.2.4. Energy interface balance law3.3. Interfacial entropy production; 3.3.1. Interfacial entropy inequality; 3.3.2. Interface Clausius-Duhem inequality; 3.3.3. Balance laws for an interface inside one component fluids; 3.3.4. A remark for the interfaces without mass; 4. CONSTITUTIVE RELATIONS DEDUCED FROM LINEAR IRREVERSIBLE THERMODYNAMICS FOR TWO-DIMENSIONAL INTERFACES; 4.1. Analysis of the surface entropy production and possible coupling; 4.2. Capillarity at equilibrium; 4.3. Newtonian interface and surface viscosities; 4.3.1. Be?nard-Marangoni effect; 4.3.2. Surface viscosities 327 $a4.4. Surface heat transfer4.5. Problems related to evaporation / condensation; 4.5.1. Plane interface case; 4.5.2. Curvature effect; 4.6. Surface chemical reactions; 4.7 Interfaces without mass; 5. CLASSICAL THREE-DIMENSIONAL CONSTITUTIVE RELATIONS DEDUCED FROM LINEAR IRREVERSIBLE THERMODYNAMICS AND THEIR CONSEQUENCES FOR INTERFACES; 5.1. Constitutive relations of three-dimensional classical fluid mixtures; 5.2. The case of premixed flames with high activation energy; 5.2.1. The classical theory of planar adiabatic premixed flames 327 $a5.2.2. Curved premixed flames with high activation energy for Lewis number near unity 330 $aThis book constitutes a comprehensive survey of the balance equations for mass, momentum and energy for the interfaces in pure fluids and mixtures. Constitutive laws are presented for many situations in engineering science, and examples are provided, including surface viscosity effects, variable surface tension and vapor recoil. In addition, some extensions of existing theory are given: stretch effect in premixed flames, relaxation zones downstream two-phase shock waves, and effective surface tension for steep gradient zones. Contents: Thermodynamics and Kinematics of Interfaces; Interface Bal 410 0$aSeries on advances in mathematics for applied sciences ;$vv. 58. 606 $aLiquid-liquid interfaces$xMathematical models 606 $aGas-liquid interfaces$xMathematical models 606 $aThermodynamics 615 0$aLiquid-liquid interfaces$xMathematical models. 615 0$aGas-liquid interfaces$xMathematical models. 615 0$aThermodynamics. 676 $a532 700 $aGatignol$b Rene?e$0346331 701 $aPrud'homme$b Roger$051442 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782276503321 996 $aMechanical and thermodynamical modeling of fluid interfaces$91419455 997 $aUNINA