LEADER 05665nam 2200661Ia 450 001 9910782272403321 005 20230721032735.0 010 $a1-281-93807-6 010 $a9786611938079 010 $a981-277-951-5 035 $a(CKB)1000000000538173 035 $a(EBL)1679918 035 $a(OCoLC)879550998 035 $a(SSID)ssj0000228077 035 $a(PQKBManifestationID)11174906 035 $a(PQKBTitleCode)TC0000228077 035 $a(PQKBWorkID)10148482 035 $a(PQKB)11060808 035 $a(MiAaPQ)EBC1679918 035 $a(WSP)00001863 035 $a(Au-PeEL)EBL1679918 035 $a(CaPaEBR)ebr10255830 035 $a(CaONFJC)MIL193807 035 $a(EXLCZ)991000000000538173 100 $a20080709d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProceedings of the Fourth Meering on CPT and Lorentz Symmetry, Bloomington, USA, 8-11 August 2007$b[electronic resource] /$feditor, V. Alan Kostelecky? 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific$dc2008 215 $a1 online resource (335 p.) 300 $a"Fourth Meering on CPT and Lorentz Symmetry, which took place between Wednesday August 8 and Saturady August 11, 2007 in the Physics Department at Indiana University, Bloomington."--P. v. 311 $a981-277-950-7 320 $aIncludes bibliographical references. 327 $aCONTENTS; Preface; Improved Tests of Lorentz and CPT Symmetry using Noble-Gas Masers A . Glenday, D.F. Phillips, and R.L. Walsworth; 1. Introduction; 2. Motivation; 3. 129Xe/3He maser upgrades for Lorentz/CPT tests; 4. Conclusions; Acknowledgments; References; A Modern Michelson-Morley Experiment using Actively Rotated Optical Resonators S. Herrmann et al.; 1. Introduction; 2. The experiment; 3. Preliminary results; 4. Outlook; References; Rotating Experiments to Test Lorentz Invariance in the Photon Sector M.E. Tobar et al.; 1. Rotating Cryogenic Sapphire Oscillator Experiment 327 $a2. Rotating Magnetic Interferometer ExperimentReferences; Lorentz Violation, Electrodynamics, and the Cosmic Microwave Background M. Mewes; 1. Introduction; 2. Theory; 3. CMB; 4. Results; Acknowledgments; References; High Energy Astrophysical Tests of Lorentz Invariance B. Altschul; References; Fundamental Physics Experiments in Space (within ESA) T.J. Sumner; 1. Motivation; 2. Enabling Technologies; 3. Opportunities; 3.1. LISA Pathfinder; 3.1.1. Technological Concept; 3.1.2. Scientific Objectives; 3.2. LISA; 3.2.1. Technological Concept; 3.2.2. Scientific Objectives; 3.3. GAUGE 327 $a3.3.1. Technological Concept3.3.2. Scientific Objectives; References; The Experimental Foundations of the Dirac Equation C. Lammerzahl; 1. The Dirac equation; 2. The generalized Dirac equation; 2.1. General geometrical structures; 2.2. Nan-relativistic limit; 3. Tests of LLI and UFF; 4. Test of basic principles; 4.1. Well posedness of Cauchy problem; 4.2. Locality; 4.3. The superposition principle; Acknowledgments; References; Perspectives on Lorentz and CPT Violation V. A. Kostelecky'; 1. Introduction; 2. Approaches and origins; 3. Describing Lorentz violation 327 $a3.1. Modified Lorentz transformations3.2 . Modified dispersion laws; 3.3. Effective field theory and the SME; 4. Gravity and Lorentz violation; 5. The search for signals; Acknowledgments; References; Search for Lorentz and CPT Violation Effects in Muon Spin Precession B.L. Roberts; 1. Introduction; 2. Experiment E821 at the BNL AGS; Acknowledgments; References; Lorentz Violation in a Diffeomorphism-Invariant Theory R. Jackiw; 1. Gauge Theory Preliminary; 2. Diffeomorphism Invariant Gravity Theory; 3. Reprise; Acknowledgments; References; Studies of CPT Symmetry with ASACUSA R.S. Hayano 327 $a1. Introduction2. Weighing the antiproton - the method; 3. Weighing the antiproton - results; 4. Outlook; Acknowledgments; References; Neutrino Oscillations and Lorentz Violation with MiniBooNE R. Tayloe and T. Katori; 1. Neutrino Oscillations, Lorentz Violation, and LSND; 2. The Tandem Model; 3. The MiniBooNE Experiment; 4. Analysis and Results; References; Testing Lorentz and CPT Invariance with MINOS Near Detector Neutrinos B.J. Rebel and S.L. Mufson; 1. Introduction; 2. Data Sample; 3. Results; 4. Future Work; References 327 $aEinstein-ather Gravity: Theory and Observational Constraints T. Jacobson 330 $a This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral meso 606 $aCP violation (Nuclear physics)$vCongresses 606 $aLorentz groups$vCongresses 615 0$aCP violation (Nuclear physics) 615 0$aLorentz groups 676 $a539.7/25 676 $a539.725 701 $aKostelecky?$b V. Alan$01466080 712 12$aMeeting on CPT and Lorentz Symmetry 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782272403321 996 $aProceedings of the Fourth Meering on CPT and Lorentz Symmetry, Bloomington, USA, 8-11 August 2007$93719563 997 $aUNINA LEADER 03157nam 2200601Ia 450 001 9910739447503321 005 20200520144314.0 010 $a4-431-54297-3 024 7 $a10.1007/978-4-431-54297-1 035 $a(CKB)3460000000120316 035 $a(EBL)1156866 035 $a(OCoLC)831115575 035 $a(SSID)ssj0000879751 035 $a(PQKBManifestationID)11477758 035 $a(PQKBTitleCode)TC0000879751 035 $a(PQKBWorkID)10871953 035 $a(PQKB)10287625 035 $a(DE-He213)978-4-431-54297-1 035 $a(MiAaPQ)EBC1156866 035 $a(PPN)168332671 035 $a(EXLCZ)993460000000120316 100 $a20130213d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSpectroscopic study on charge-spin-orbital coupled phenomena in Mott-Transition oxides $edoctoral thesis accepted by the University of Tokyo, Tokyo, Japan /$fMasaki Uchida 205 $a1st ed. 2013. 210 $aTokyo ;$aNew York $cSpringer$dc2013 215 $a1 online resource (109 p.) 225 0$aSpringer theses,$x2190-5053 300 $aDescription based upon print version of record. 311 $a4-431-54296-5 320 $aIncludes bibliographical references. 327 $aIntroduction -- Experimental Methods -- Charge Dynamics and Thermoelectricity in a Typical System -- Charge Dynamics in a Doped Valence-Bond Solid System -- Charge Dynamics in Layered Nickelates with Charge-Ordering Instability -- Summary. 330 $aIn this thesis the author presents the results of extensive spectroscopy experiments beyond the bounds of each transition element to clarify the origins of characteristic spectral features and charge dynamics in charge-spin-orbital coupled phenomena in Mott-transition oxides. Several counterpart 3d transition-metal oxides were adopted as model systems suitable for examining the mechanisms involved, and their electronic structures were systematically investigated using three main spectroscopy methods. Comparative studies on the charge dynamics and Mott transition features of transition-metal oxides were performed: Charge dynamics and thermoelectricity in a typical Mott transition system La1-XSrXVO3, charge dynamics in a doped valence-bond solid system (Ti1?xVx)2O3 and in layered nickelates R2-xSrxNiO4 with charge-ordering instability are investigated thoroughly. The results obtained successfully provide a number of novel insights into the emergent phenomena near the Mott transition.  . 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aCharge transfer 606 $aTransition metal oxides$xSpectra 615 0$aCharge transfer. 615 0$aTransition metal oxides$xSpectra. 676 $a537.6221 676 $a539.7/25 676 $a539.725 700 $aUchida$b Masaki$01424574 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910739447503321 996 $aSpectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides$93553868 997 $aUNINA