LEADER 03864nam 22005654a 450 001 9910782214903321 005 20191030193358.0 010 $a1-282-71145-8 010 $a9786612711459 010 $a0-08-092328-3 035 $a(CKB)1000000000549871 035 $a(EBL)365619 035 $a(OCoLC)318327993 035 $a(SSID)ssj0000199314 035 $a(PQKBManifestationID)12028951 035 $a(PQKBTitleCode)TC0000199314 035 $a(PQKBWorkID)10196236 035 $a(PQKB)10575503 035 $a(Au-PeEL)EBL365619 035 $a(CaPaEBR)ebr10254729 035 $a(CaONFJC)MIL271145 035 $a(MiAaPQ)EBC365619 035 $a(EXLCZ)991000000000549871 100 $a20080626d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMATLAB for neuroscientists$b[electronic resource] $ean introduction to scientific computing in MATLAB /$fPascal Wallisch ... [et al.] 210 $aAmsterdam ;$aBoston $cElsevier/Academic Press$dc2009 215 $a1 online resource (407 p.) 300 $aDescription based upon print version of record. 311 $a0-12-374551-9 320 $aIncludes bibliographical references (p. 371-377) and index. 327 $aFront Cover; MATLAB for Neuroscientists; Copyright Page; Contents; Preface; About the Authors; How to Use This Book; Part I: Fundamentals; Chapter 1: Introduction; Chapter 2: MATLAB Tutorial; Part II: Data collection with matlab; Chapter 3: Visual Search and Pop Out; Chapter 4: Attention; Chapter 5: Psychophysics; Chapter 6: Signal Detection Theory; Part III: Data Analysis with MATLAB; Chapter 7: Frequency Analysis Part I: Fourier Decomposition; Chapter 8: Frequency Analysis Part II: Nonstationary Signals and Spectrograms; Chapter 9: Wavelets; Chapter 10: Convolution 327 $aChapter 11: Introduction to Phase Plane AnalysisChapter 12: Exploring the Fitzhugh-Nagumo Model; Chapter 13: Neural Data Analysis: Encoding; Chapter 14: Principal Components Analysis; Chapter 15: Information Theory; Chapter 16: Neural Decoding Part I: Discrete Variables; Chapter 17: Neural Decoding Part II: Continuous Variables; Chapter 18: Functional Magnetic Imaging; Part IV: Data modeling with matlab; Chapter 19: Voltage-Gated Ion Channels; Chapter 20: Models of a Single Neuron; Chapter 21: Models of the Retina; Chapter 22: Simplified Model of Spiking Neurons 327 $aChapter 23: Fitzhugh-Nagumo Model: Traveling WavesChapter 24: Decision Theory; Chapter 25: Markov Models; Chapter 26: Modeling Spike Trains as a Poisson Process; Chapter 27: Synaptic Transmission; Chapter 28: Neural Networks Part I: Unsupervised Learning; Chapter 29: Neural Network Part II: Supervised Learning; Appendix A: Thinking in MATLAB; Appendix B: Linear Algebra Review; Appendix C: Master Equation List; References; Index; Color Plates 330 $aMatlab is the accepted standard for scientific computing, used globally in virtually all Neuroscience and Cognitive Psychology laboratories. For instance, SPM, the most used software for the analysis and manipulation of fMRI images in research and clinical practice is fully programmed in matlab, and its use of the possibility to allow for sophisticated software modules to be freely added to the software has established it as the by far dominant software in the field. Many universities now offer, or are beginning to offer matlab introductory courses in their neuroscience and psychology programs 606 $aNeurosciences$xData processing 615 0$aNeurosciences$xData processing. 676 $a612.80285 701 $aWallisch$b Pascal$f1978-$01539598 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782214903321 996 $aMATLAB for neuroscientists$93799013 997 $aUNINA