LEADER 05646nam 22007334a 450 001 9910782192403321 005 20210524212842.0 010 $a1-282-19433-X 010 $a9786612194337 010 $a3-11-019808-8 024 7 $a10.1515/9783110198089 035 $a(CKB)1000000000520539 035 $a(EBL)314056 035 $a(OCoLC)437191132 035 $a(SSID)ssj0000232550 035 $a(PQKBManifestationID)11220556 035 $a(PQKBTitleCode)TC0000232550 035 $a(PQKBWorkID)10214089 035 $a(PQKB)11385128 035 $a(MiAaPQ)EBC314056 035 $a(DE-599)GBV587949066 035 $a(DE-B1597)32327 035 $a(OCoLC)979632458 035 $a(DE-B1597)9783110198089 035 $a(Au-PeEL)EBL314056 035 $a(CaPaEBR)ebr10194871 035 $a(CaONFJC)MIL219433 035 $a(OCoLC)232160048 035 $z(PPN)175573107 035 $a(PPN)140369619 035 $a(EXLCZ)991000000000520539 100 $a20040211d2004 uy 0 101 0 $aeng 135 $aurun#---|u||u 181 $ctxt 182 $cc 183 $acr 200 00$aRandom walks and geometry$b[electronic resource] $eproceedings of a workshop at the Erwin Schro?dinger Institute, Vienna, June 18-July 13, 2001 /$feditor, Vadim A. Kaimanovich, in collaboration with Klaus Schmidt and Wolfgang Woess 210 $aBerlin ;$aNew York $cWalter de Gruyter$dc2004 215 $a1 online resource (544 p.) 225 0 $aDe Gruyter Proceedings in Mathematics 300 $aDescription based upon print version of record. 311 0 $a3-11-017237-2 320 $aIncludes bibilographical references. 327 $tFront matter --$tTable of contents --$tSurveys and longer articles --$tSome Markov chains on abelian groups with applications --$tRandom walks and physical models on infinite graphs: an introduction --$tThe Garden of Eden Theorem for cellular automata and for symbolic dynamical systems --$tExpander graphs, random matrices and quantum chaos --$tThe Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps --$tSimplicité de spectres de Lyapounov et propriété d'isolation spectrale pour une famille d'opérateurs de transfert sur l'espace projectif --$tAn introduction to the Stochastic Loewner Evolution --$tA canonical form for automorphisms of totally disconnected locally compact groups --$tResearch communications --$tOn the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds --$tMarkov processes on vermiculated spaces --$tCactus trees and lower bounds on the spectral radius of vertex-transitive graphs --$tEquilibrium measure, Poisson kernel and effective resistance on networks --$tInternal diffusion limited aggregation on discrete groups of polynomial growth --$tOn the physical relevance of random walks: an example of random walks on a randomly oriented lattice --$tRandom walks, entropy and hopfianity of free groups --$tGrowth rates of small cancellation groups --$tRecurrence properties of random walks on finite volume homogeneous manifolds --$tOn the cohomology of foliations with amenable groupoid --$tLinear rate of escape and convergence in direction --$tRemarks on harmonic functions on affine buildings --$tRandom walks, spectral radii, and Ramanujan graphs --$tCogrowth of arbitrary graphs --$tTotal variation lower bounds for finite Markov chains: Wilson's lemma --$tBack matter 330 $aDie jüngsten Entwicklungen zeigen, dass sich Wahrscheinlichkeitsverfahren zu einem sehr wirkungsvollen Werkzeug entwickelt haben, und das auf so unterschiedlichen Gebieten wie statistische Physik, dynamische Systeme, Riemann'sche Geometrie, Gruppentheorie, harmonische Analyse, Graphentheorie und Informatik. 330 $aRecent developments show that probability methods have become a very powerful tool in such different areas as statistical physics, dynamical systems, Riemannian geometry, group theory, harmonic analysis, graph theory and computer science. This volume is an outcome of the special semester 2001 - Random Walks held at the Schrödinger Institute in Vienna, Austria. It contains original research articles with non-trivial new approaches based on applications of random walks and similar processes to Lie groups, geometric flows, physical models on infinite graphs, random number generators, Lyapunov exponents, geometric group theory, spectral theory of graphs and potential theory. Highlights are the first survey of the theory of the stochastic Loewner evolution and its applications to percolation theory (a new rapidly developing and very promising subject at the crossroads of probability, statistical physics and harmonic analysis), surveys on expander graphs, random matrices and quantum chaos, cellular automata and symbolic dynamical systems, and others. The contributors to the volume are the leading experts in the area. The book will provide a valuable source both for active researchers and graduate students in the respective fields. 410 3$aDe Gruyter Proceedings in Mathematics 606 $aRandom walks (Mathematics)$vCongresses 606 $aGeometry$vCongresses 615 0$aRandom walks (Mathematics) 615 0$aGeometry 676 $a519.2/82 686 $aSK 820$2rvk 701 $aKaimanovich$b Vadim A$0898963 701 $aSchmidt$b Klaus$f1943-$01558413 701 $aWoess$b Wolfgang$f1954-$060805 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782192403321 996 $aRandom walks and geometry$93822736 997 $aUNINA