LEADER 03301nam 22006974a 450 001 9910782098903321 005 20200520144314.0 010 $a3-7643-8732-7 024 7 $a10.1007/978-3-7643-8732-7 035 $a(CKB)1000000000491984 035 $a(EBL)364625 035 $a(OCoLC)288569765 035 $a(SSID)ssj0000518068 035 $a(PQKBManifestationID)11318967 035 $a(PQKBTitleCode)TC0000518068 035 $a(PQKBWorkID)10492898 035 $a(PQKB)11198408 035 $a(SSID)ssj0000492873 035 $a(PQKBManifestationID)11314116 035 $a(PQKBTitleCode)TC0000492873 035 $a(PQKBWorkID)10499328 035 $a(PQKB)11645411 035 $a(DE-He213)978-3-7643-8732-7 035 $a(MiAaPQ)EBC364625 035 $a(Au-PeEL)EBL364625 035 $a(CaPaEBR)ebr10253618 035 $a(PPN)129063320 035 $a(EXLCZ)991000000000491984 100 $a20071204d2008 uy 0 101 0 $ager 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExponentially dichotomous operators and applications$b[electronic resource] /$fCornelis van der Mee 205 $a1st ed. 2008. 210 $aBasel ;$aBoston $cBirkha?user$dc2008 215 $a1 online resource (235 p.) 225 1 $aOperator theory, advances and applications ;$vv. 182.$aLinear operators and linear systems 300 $aDescription based upon print version of record. 311 $a3-7643-8731-9 320 $aIncludes bibliographical references (p. [209]-219). 327 $aExponentially Dichotomous operators and Bisemigroups -- Perturbing Exponentially Dichotomous Operators -- Abstract Cauchy problems -- Riccati Equations and Wiener-Hopf Factorization -- Transport Equations -- Indefinite Sturm-Liouville Problems -- Noncausal Continuous Time Systems -- Mixed-type Functional Differential Equations. 330 $aIn this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and additive and multiplicative perturbation results are given. The general theory of the first three chapters is then followed by applications to Wiener-Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type. 410 0$aOperator theory, advances and applications ;$vv. 182. 410 0$aOperator theory, advances and applications.$pLinear operators and linear systems. 606 $aOperator theory 606 $aDifferential equations, Linear 606 $aPerturbation (Mathematics) 615 0$aOperator theory. 615 0$aDifferential equations, Linear. 615 0$aPerturbation (Mathematics) 676 $a515/.724 700 $aMee$b C. V. M. van der$g(Cornelis Victor Maria)$055930 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910782098903321 996 $aExponentially dichotomous operators and applications$9716840 997 $aUNINA