LEADER 03482nam 22007332 450 001 9910781961203321 005 20151005020621.0 010 $a1-107-23223-6 010 $a1-139-10184-6 010 $a1-139-10364-4 010 $a1-299-40566-5 010 $a1-139-10118-8 010 $a1-139-09916-7 010 $a1-139-00384-4 035 $a(CKB)2550000000061523 035 $a(EBL)802953 035 $a(OCoLC)826452027 035 $a(SSID)ssj0000572390 035 $a(PQKBManifestationID)11349097 035 $a(PQKBTitleCode)TC0000572390 035 $a(PQKBWorkID)10528654 035 $a(PQKB)11676618 035 $a(UkCbUP)CR9781139003841 035 $a(Au-PeEL)EBL802953 035 $a(CaPaEBR)ebr10576305 035 $a(CaONFJC)MIL471816 035 $a(MiAaPQ)EBC802953 035 $a(PPN)261367102 035 $a(EXLCZ)992550000000061523 100 $a20110124d2011|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFusion systems in algebra and topology /$fMichael Aschbacher, Radha Kessar, Bob Oliver$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2011. 215 $a1 online resource (vi, 320 pages) $cdigital, PDF file(s) 225 1 $aLondon Mathematical Society lecture note series ;$v391 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-139-09986-8 311 $a1-107-60100-2 320 $aIncludes bibliographical references and index. 327 $aIntroduction to fusion systems -- The local theory of fusion systems -- Fusion and homotopy theory -- Fusion and representation theory -- Appendix A. Background facts about groups. 330 $aA fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians. 410 0$aLondon Mathematical Society lecture note series ;$v391. 517 3 $aFusion Systems in Algebra & Topology 606 $aCombinatorial group theory 606 $aTopological groups 606 $aAlgebraic topology 615 0$aCombinatorial group theory. 615 0$aTopological groups. 615 0$aAlgebraic topology. 676 $a512/.2 686 $aMAT002000$2bisacsh 700 $aAschbacher$b Michael$f1944-$061453 702 $aKessar$b Radha 702 $aOliver$b Robert$f1949- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910781961203321 996 $aFusion systems in algebra and topology$93761524 997 $aUNINA LEADER 01180nam 2200385 450 001 9910824103003321 005 20230807211943.0 010 $a1-937440-80-X 035 $a(CKB)3710000000769472 035 $a(MiAaPQ)EBC4544687 035 $a(EXLCZ)993710000000769472 100 $a20160824h20152015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 04$aThe 1982 Symposium on "music in the life of man" $ethe beginnings of music therapy theory /$fedited by Michele Forinash and Carolyn Kenny 210 1$aDallas, Texas :$cBarcelona Publishers,$d2015. 210 4$dİ2015 215 $a1 online resource (85 pages) $cillustrations, photographs 311 $a1-937440-79-6 320 $aIncludes bibliographical references. 606 $aMusic therapy 615 0$aMusic therapy. 676 $a615.85154 702 $aForinash$b Michele 702 $aKenny$b Carolyn 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910824103003321 996 $aThe 1982 Symposium on "music in the life of man"$93917706 997 $aUNINA