LEADER 02484nam 2200649Ia 450 001 9910781871303321 005 20171026195700.0 010 $a1-283-28645-9 010 $a9786613286451 010 $a0-472-02768-9 024 7 $a10.3998/mpub.3250714 035 $a(CKB)2550000000056873 035 $a(OCoLC)759037141 035 $a(CaPaEBR)ebrary10502601 035 $a(SSID)ssj0000541135 035 $a(PQKBManifestationID)11367187 035 $a(PQKBTitleCode)TC0000541135 035 $a(PQKBWorkID)10493209 035 $a(PQKB)10925173 035 $a(MiAaPQ)EBC3415015 035 $a(MdBmJHUP)muse766 035 $a(MiU)10.3998/mpub.3250714 035 $a(Au-PeEL)EBL3415015 035 $a(CaPaEBR)ebr10502601 035 $a(CaONFJC)MIL328645 035 $a(OCoLC)923504328 035 $a(EXLCZ)992550000000056873 100 $a20110412d2011 ub 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSecurity integration in Europe $ehow knowledge-based networks are transforming the European Union /$fMai'a K. Davis Cross 210 1$aAnn Arbor :$cUniversity of Michigan Press,$dc2011. 215 $a1 online resource (292 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-472-11789-0 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Why do epistemic communities matter? -- Toward European security integration -- Diplomats and internal security -- Diplomats and external security -- The military community -- Loose and nascent communities. 606 $aSecurity, International$zEuropean Union countries$xPlanning 606 $aPolicy networks$zEuropean Union countries 606 $aNational security$zEuropean Union countries$xPlanning$xInternational cooperation 606 $aInternal security$zEuropean Union countries$xPlanning$xInternational cooperation 615 0$aSecurity, International$xPlanning. 615 0$aPolicy networks 615 0$aNational security$xPlanning$xInternational cooperation. 615 0$aInternal security$xPlanning$xInternational cooperation. 676 $a355/.03354 700 $aCross$b Mai'a K. Davis$f1977-$01492395 712 02$aMichigan Publishing (University of Michigan) 801 0$bMiU 801 1$bMiU 906 $aBOOK 912 $a9910781871303321 996 $aSecurity integration in Europe$93714894 997 $aUNINA LEADER 03314nam 2200649Ia 450 001 9910781093603321 005 20230721005500.0 010 $a1-282-44092-6 010 $a9786612440922 010 $a981-283-388-9 035 $a(CKB)2550000000001317 035 $a(EBL)477251 035 $a(OCoLC)554919213 035 $a(SSID)ssj0000340647 035 $a(PQKBManifestationID)11265599 035 $a(PQKBTitleCode)TC0000340647 035 $a(PQKBWorkID)10388640 035 $a(PQKB)10999625 035 $a(MiAaPQ)EBC477251 035 $a(WSP)00006977 035 $a(Au-PeEL)EBL477251 035 $a(CaPaEBR)ebr10361610 035 $a(CaONFJC)MIL244092 035 $a(EXLCZ)992550000000001317 100 $a20090306d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMultiplier convergent series$b[electronic resource] /$fCharles Swartz 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$d2009 215 $a1 online resource (264 p.) 300 $aDescription based upon print version of record. 311 $a981-283-387-0 320 $aIncludes bibliographical references (p. 245-249) and index. 327 $aPreface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series 327 $a14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index 330 $aIf ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18 tjxj converges in X for every {tj} e?. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in ?1 are also developed for multiplie 606 $aConvergence 606 $aMultipliers (Mathematical analysis) 606 $aOrlicz spaces 606 $aSeries, Arithmetic 615 0$aConvergence. 615 0$aMultipliers (Mathematical analysis) 615 0$aOrlicz spaces. 615 0$aSeries, Arithmetic. 676 $a515.35 676 $a515/.24 700 $aSwartz$b Charles$f1938-$054079 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910781093603321 996 $aMultiplier convergent series$93841268 997 $aUNINA