LEADER 00893nam0-22003011i-450- 001 990008450100403321 005 20070202143026.0 035 $a000845010 035 $aFED01000845010 035 $a(Aleph)000845010FED01 035 $a000845010 100 $a20070116d1902----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $ay-------001yy 200 1 $aLouis 13. d'apres sa correspondance avec le cardinal de Richelieu$fpar le comte de Beauchamp 205 $aNouv. ed 210 $aParis$cRenouard, H. Laurens$d1902 215 $a460 p.$d23 cm 676 $a340$v11 rid.$zita 700 0$aLouis$c$0389573 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008450100403321 952 $aSDI-B 6$b1627$fSDI 959 $aSDI 996 $aLouis 13. d'apres sa correspondance avec le cardinal de Richelieu$9728475 997 $aUNINA LEADER 02441nam 2200601 450 001 9910781167003321 005 20230120010849.0 010 $a1-283-52603-4 010 $a9786613838483 010 $a0-08-095780-3 035 $a(CKB)2550000000015272 035 $a(EBL)579250 035 $a(OCoLC)688477201 035 $a(SSID)ssj0000701088 035 $a(PQKBManifestationID)12258312 035 $a(PQKBTitleCode)TC0000701088 035 $a(PQKBWorkID)10672910 035 $a(PQKB)11389037 035 $a(MiAaPQ)EBC579250 035 $a(EXLCZ)992550000000015272 100 $a19840130h19641964 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNon-linear wave propagation $ewith applications to physics and magnetohydrodynamics /$fA. Jeffrey, T. Taniuti 210 1$aNew York :$cAcademic Press,$d[1964] 210 4$dİ1964 215 $a1 online resource (381 p.) 225 1 $aMathematics in science and engineering ;$vvolume 9 300 $aDescription based upon print version of record. 311 $a0-12-374917-4 320 $aIncludes bibliographical references and index. 327 $apart 1. General theory -- part 2. The application to magnetohydrodynamics. 330 $aIn this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank 410 0$aMathematics in science and engineering ;$vvolume 9. 606 $aWaves 606 $aNonlinear mechanics 606 $aMagnetohydrodynamics 615 0$aWaves. 615 0$aNonlinear mechanics. 615 0$aMagnetohydrodynamics. 676 $a515.72480113 700 $aJeffrey$b Alan$0344412 702 $aTaniuti$b Tosiya$f1924- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910781167003321 996 $aNon-linear wave propagation$9117655 997 $aUNINA