LEADER 02317nam 22005654a 450 001 9910780812103321 005 20230721025206.0 010 $a1-282-44234-1 010 $a9786612442346 010 $a981-283-557-1 035 $a(CKB)2550000000000606 035 $a(EBL)477268 035 $a(OCoLC)557513691 035 $a(SSID)ssj0000336196 035 $a(PQKBManifestationID)12084162 035 $a(PQKBTitleCode)TC0000336196 035 $a(PQKBWorkID)10282853 035 $a(PQKB)11500322 035 $a(MiAaPQ)EBC477268 035 $a(WSP)00007052 035 $a(Au-PeEL)EBL477268 035 $a(CaPaEBR)ebr10361839 035 $a(EXLCZ)992550000000000606 100 $a20080726g20089999 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinuum thermodynamics$b[electronic resource] /$fby Krzysztof Wilmanski 210 $aHackensack, N.J. $cWorld Scientific$d2008- 215 $a1 online resource (416 p.) 225 1 $aSeries on advances in mathematics for applied sciences ;$vv. 77 300 $aDescription based upon print version of record. 311 $a981-283-556-3 320 $aIncludes bibliographical references (v. 1, p. 373-395) and index. 327 $apt. 1. Foundation --. 330 $aThis book is a unique presentation of thermodynamic methods of construction of continuous models. It is based on a uniform approach following from the entropy inequality and using Lagrange multipliers as auxiliary quantities in its evaluation. It covers a wide range of models - ideal gases, thermoviscoelastic fluids, thermoelastic and thermoviscoelastic solids, plastic polycrystals, miscible and immiscible mixtures, and many others. The structure of phenomenological thermodynamics is justified by a systematic derivation from the Liouville equation, through the BBGKY-hierarchy-derived Boltzmann 410 0$aSeries on advances in mathematics for applied sciences ;$vv. 77. 606 $aThermodynamics 615 0$aThermodynamics. 676 $a536/.7 700 $aWilman?ski$b Krzysztof$031903 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780812103321 996 $aContinuum thermodynamics$93825636 997 $aUNINA