LEADER 05507nam 2200697 a 450 001 9910780727703321 005 20230721024432.0 010 $a1-282-75749-0 010 $a9786612757495 010 $a981-283-763-9 035 $a(CKB)2490000000001597 035 $a(EBL)1681647 035 $a(OCoLC)613386751 035 $a(SSID)ssj0000423741 035 $a(PQKBManifestationID)12121807 035 $a(PQKBTitleCode)TC0000423741 035 $a(PQKBWorkID)10470185 035 $a(PQKB)10729393 035 $a(MiAaPQ)EBC1681647 035 $a(WSP)00000526 035 $a(Au-PeEL)EBL1681647 035 $a(CaPaEBR)ebr10422412 035 $a(CaONFJC)MIL275749 035 $a(EXLCZ)992490000000001597 100 $a20100105d2009 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNanoscale processes on insulating surfaces$b[electronic resource] /$fEnrico Gnecco, Marek Szymonski 210 $aSingapore ;$aHackensack, N.J. $cWorld Scientific$dc2009 215 $a1 online resource (201 p.) 300 $aDescription based upon print version of record. 311 $a981-283-762-0 320 $aIncludes bibliographical references (p. 163-181) and index. 327 $aContents; About the authors; Preface; 1. Crystal Structures of Insulating Surfaces; 1.1 Halide Surfaces; 1.1.1 Alkali halide surfaces; 1.1.2 Alkaline earth halide surfaces; 1.2 Oxide Surfaces; 1.2.1 True insulating oxide surfaces; 1.2.1.1 Aluminum oxide; 1.2.1.2 Magnesium oxide; 1.2.1.3 Silicon dioxide; 1.2.2 Mixed conducting oxide surfaces; 1.2.2.1 Titanium dioxide; 1.2.2.2 Zinc oxide; 1.2.2.3 Tin dioxide; 1.2.2.4 Cerium dioxide; 1.2.2.5 Strontium titanate; 2. Preparation Techniques of Insulating Surfaces; 2.1 Ultra High Vacuum.; 2.2 Preparation of Bulk Insulating Surfaces 327 $a2.2.1 Halide surfaces2.2.2 Oxide surfaces; 2.2.3 Nanostructuring of insulating surfaces; 2.2.3.1 Evaporation spirals on alkali halides; 2.2.3.2 Faceting of halide and oxide surfaces; 2.3 Deposition of Insulating Films, Metals and Organic Molecules; 2.3.1 Thin insulating films; 2.3.2 Metal adsorbates on insulators; 2.3.3 Organic molecules on insulators; 3. Scanning Probe Microscopy in Ultra High Vacuum; 3.1 Atomic Force Microscopy; 3.1.1 Relevant forces in AFM; 3.1.2 Contact AFM; 3.1.3 Non-contact AFM; 3.1.3.1 Tuning fork sensors; 3.1.4 Kelvin probe force microscopy 327 $a3.2 Scanning Tunneling Microscopy 3.2.1 Scanning tunneling microscopy; 3.2.2 Scanning tunneling spectroscopy; 3.3 Atomistic Modeling of SPM; 4. Scanning Probe Microscopy on Bulk Insulating Surfaces; 4.1 Halide Surfaces; 4.1.1 Alkali halide surfaces; 4.1.2 Alkaline earth halide surfaces; 4.2 Oxide Surfaces; 4.2.1 True insulating oxide surfaces; 4.2.1.1 Aluminum oxide; 4.2.1.2 Magnesium oxide; 4.2.1.3 Silicon dioxide; 4.2.2 Mixed conducting oxide surfaces; 4.2.2.1 Titanium dioxide; 4.2.2.2 Zinc oxide; 4.2.2.3 Tin dioxide; 4.2.2.4 Cerium dioxide; 4.2.2.5 Strontium titanate 327 $a4.3 Modeling AFM on Bulk Insulating Surfaces4.3.1 Halide surfaces; 4.3.2 Oxide surfaces; 5. Scanning Probe Microscopy on Thin Insulating Films; 5.1 Halide Films on Metals; 5.1.1 Carpet-like growth.; 5.1.2 Restructuring and patterning of vicinal surfaces; 5.1.3 Fractal growth at low temperatures; 5.2 Halide Films on Semiconductors; 5.3 Heteroepitaxial Growth of Alkali Halide Films; 5.4 Oxide Films; 5.5 Modeling AFM on Thin Insulating Films; 6. Interaction of Ions, Electrons and Photons with Halide Surfaces; 6.1 Ion Bombardment of Alkali Halides; 6.2 Electron and Photon Stimulated Desorption 327 $a6.2.1 Electron stimulated desorption 6.2.2 Photon stimulated desorption; 6.2.2.1 Desorption by excitation at threshold energies; 6.2.2.2 Desorption due to band-band excitation; 7. Surface Patterning with Electrons and Photons; 7.1 Surface Topography Modification by Electronic Excitations; 7.1.1 Layer-by-layer desorption; 7.1.2 Coexcitation with visible light; 7.2 Nanoscale Pits on Alkali Halide Surfaces; 7.2.1 Diffusion equation for F-centers; 8. Surface Patterning with Ions; 8.1 Ripple Formation by Ion Bombardment; 8.1.1 Linear continuum theory for ripple formation 327 $a8.1.2 Beyond the continuum theory 330 $aIonic crystals are among the simplest structures in nature. They can be easily cleaved in air and in vacuum, and the resulting surfaces are atomically flat on areas hundreds of nanometers wide. With the development of scanning probe microscopy, these surfaces have become an ideal "playground" to investigate several phenomena occurring on the nanometer scale. This book focuses on the fundamental studies of atomically resolved imaging, nanopatterning, metal deposition, molecular self-assembling and nanotribological processes occurring on ionic crystal surfaces. Here, a significant variety of st 606 $aScanning probe microscopy 606 $aNanoelectronics 606 $aIonic crystals 606 $aThin films$xSurfaces 615 0$aScanning probe microscopy. 615 0$aNanoelectronics. 615 0$aIonic crystals. 615 0$aThin films$xSurfaces. 676 $a530.4/275 700 $aGnecco$b Enrico$01519848 701 $aSzymon?ski$b Marek$01519849 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780727703321 996 $aNanoscale processes on insulating surfaces$93758155 997 $aUNINA