LEADER 05872nam 2200781Ia 450 001 9910780726803321 005 20230721024416.0 010 $a1-282-76122-6 010 $a9786612761225 010 $a981-4280-64-X 035 $a(CKB)2490000000001610 035 $a(EBL)1193252 035 $a(SSID)ssj0000440549 035 $a(PQKBManifestationID)11317990 035 $a(PQKBTitleCode)TC0000440549 035 $a(PQKBWorkID)10470551 035 $a(PQKB)10352770 035 $a(MiAaPQ)EBC1193252 035 $a(WSP)00000580 035 $a(Au-PeEL)EBL1193252 035 $a(CaPaEBR)ebr10744751 035 $a(CaONFJC)MIL276122 035 $a(OCoLC)729020576 035 $a(EXLCZ)992490000000001610 100 $a20100127d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aP.G. de Gennes' impact on science$b[electronic resource] $hVolume 2$iSoft matter and biophysics /$fJulien Bok, Jacques Prost, Francoise Brochard-Wyart, editors 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2009 215 $a1 online resource (181 p.) 225 1 $aSeries on directions in condensed matter physics ;$vvol. 19 300 $aDescription based upon print version of record. 311 $a981-4291-04-8 311 $a981-4280-63-1 320 $aIncludes bibliographical references. 327 $aPreface; Acknowledgments; CONTENTS; The n = 0 Discovery Thomas A. Witten; 1. Introduction; 2. Gloss; 3. Polymer Impact; 3.1. Antecedents; 3.2. Early impact; 3.3. Further implications; 4. Field Theory Implications: A Paradoxical Limit; 5. Assessment; 6. Conclusion; References; Dynamics of Entangled Polymers: The Three Key Ideas Michael Rubinstein; 1. Entanglements in Polymer Melts; 2. Tube Model; 3. Reptation Model; 4. Constraint Release; 5. Arm Retraction; 6. Main Developments in the Wake of de Gennes Ideas; 6.1. Doi-Edwards stress relaxation model; 6.2. Doi tube length uctuation model 327 $a6.3. Self-consistent constraint release6.4. Polymers with no ends or with too many ends; 7. Open Questions and Future Directions; 7.1. The nature of entanglement and con ning tube; 7.2. Constraint release revisited; 7.3. Asymptopia; Acknowledgments; References; P. G. de Gennes, J. Phys. France 36, 1199-1203 (1975) Reptation of Stars; 1. Introduction.; 2. Queriching of reptation.; 3. Mechanical relaxation.; 4. Comparison with polymer melts.; 5. Conclusions.; Acknowledgments.; APPENDIX A; References; Polyelectrolytes: The de Gennes Legacy Philip Pincus and Omar A. Saleh; 1. Introduction 327 $a2. The Electrostatic Persistence Length3. Stretching Single Polymers; 4. Conclusion; References; P. G. de Gennes, P. Pincus, R. M. Velasco and F. Brochard, J. de Phys. 37, 1461-1473 (1976) Remarks on polyelectrolyte conformation; 1. Introduction.; 2. The single chain problem.; 3. The lattice regime.; 4. Semi dilute solutions.; 5. Concluding remarks.; Acknowledgments.; APPENDIX A; APPENDIX B; References; Polymers in Confined Geometries Karine Guevorkian and Francoise Brochard-Wyart; 1. Introduction; 2. Birth of Blobs; 3. Panorama of Polymers and Pores; 3.1. Classes of polymers 327 $a3.1.1. Flexible polymers3.1.2. Globular polymers; 3.1.3. Semi-.exible polymers; 3.1.4. Exotic polymers: stars and branched polymers; 3.2. Pores and nano-holes; 3.2.1. d = 1 Cylindrical pores; 3.2.2. d = 2 Slits or free surfaces; 3.2.3. d = 0 Holes; 4. Flexible Polymers in Confined Geometry; 4.1. Statics and dynamics of confined chains; 4.2. Forced penetration by a solvent flow; 4.2.1. Daoudi affine deformation at the pore entrance17; 4.2.2. De Gennes suction model; 5. Role of Topology; 5.1. Star polymers; 5.2. Branched polymers; 6. Semi-flexible Polymers in Rigid and Soft Tubes 327 $a6.1. Semi-flexible polymers in rigid tubes6.1.1. Forced penetration under flow; 6.2. Semi-flexible polymers in soft tubes: snakes vs globules; 7. Holes: Passage of Polymers; 8. Confinement of Soft Object from Globular Polymers to Cells and Tissues; 8.1. Globular polymers and micro-droplets; 8.2. Micropipette aspiration of vesicles; 8.3. Cells in confined geometries; 8.4. Aspiration of balls of cells; 9. Concluding Remarks; References; F. Brochard and P. G. de Gennes, J. Chem. Phys. 67, 52-56 (1977) Dynamics of confined polymers chains; I. Introduction 327 $aII. KIRKWOOD CALCULATION OF THE CHAIN MOBILITY 330 $aThis publication, in two volumes, is devoted to the scientific impact of the work of Nobel Laureate, Pierre-Gilles de Gennes, one of the greatest scientists of the 20th century. It covers the important fields for which de Gennes was renowned: solid state (magnetism and superconductivity), macroscopic random media and percolation, supersolids, liquid crystals, polymers, adhesion and friction, and biophysics.The book brings together internationally renowned experts to contribute their perspectives on the significance of de Gennes' works. They have each selected a definitive paper, which gives th 410 0$aSeries on directions in condensed matter physics ;$vv. 19. 606 $aBiophysics 606 $aCondensed matter 606 $aLiquid crystals 606 $aSolid state physics 615 0$aBiophysics. 615 0$aCondensed matter. 615 0$aLiquid crystals. 615 0$aSolid state physics. 676 $a530 676 $a530.41 701 $aBok$b Julien$f1933-$012583 701 $aPagnol$b Jacqueline$01519843 701 $aBrochard-Wyart$b Franc?oise$0443593 701 $aGennes$b Pierre-Gilles de$022814 701 $aProst$b Jacques$021806 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780726803321 996 $aP.G. de Gennes' impact on science$93758146 997 $aUNINA