LEADER 03087nam 2200781 a 450 001 9910780707003321 005 20200520144314.0 010 $a1-283-39679-3 010 $a9786613396792 024 7 $a10.1515/9783110203738 035 $a(CKB)2500000000002753 035 $a(EBL)771211 035 $a(OCoLC)751963450 035 $a(SSID)ssj0000559752 035 $a(PQKBManifestationID)11382728 035 $a(PQKBTitleCode)TC0000559752 035 $a(PQKBWorkID)10569620 035 $a(PQKB)11684269 035 $a(MiAaPQ)EBC771211 035 $a(WaSeSS)Ind00014397 035 $a(DE-B1597)33674 035 $a(OCoLC)763156949 035 $a(OCoLC)979749314 035 $a(DE-B1597)9783110203738 035 $a(Au-PeEL)EBL771211 035 $a(CaPaEBR)ebr10498746 035 $a(CaONFJC)MIL339679 035 $a(PPN)175512892 035 $a(EXLCZ)992500000000002753 100 $a20110216d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFeynman-Kac-type theorems and Gibbs measures on path space$b[electronic resource] $ewith applications to rigorous quantum field theory /$fby Jo?zsef Lo?rinczi, Fumio Hiroshima, Volker Betz 210 $aBerlin ;$aNew York $cDe Gruyter$dc2011 215 $a1 online resource (520 p.) 225 1 $aDe gruyter studies in mathamatics,$x0179-0986 ;$v34 300 $aDescription based upon print version of record. 311 $a3-11-020148-8 311 $a3-11-020373-1 320 $aIncludes bibliographical references and index. 327 $apt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. 330 $aThis monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. 410 0$aDe Gruyter studies in mathematics ;$v34. 606 $aIntegration, Functional 606 $aStochastic analysis 606 $aQuantum field theory$xMathematics 610 $aBrownian Motion. 610 $aFeynman-Kac-TypeTheorems. 610 $aGibbs Measures. 610 $aQuantum Field Theory. 615 0$aIntegration, Functional. 615 0$aStochastic analysis. 615 0$aQuantum field theory$xMathematics. 676 $a515/.724 686 $aSK 820$2rvk 700 $aLo?rinczi$b Jo?zsef$01563611 701 $aHiroshima$b Fumio$0781859 701 $aBetz$b Volker$01563612 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780707003321 996 $aFeynman-Kac-type theorems and Gibbs measures on path space$93832135 997 $aUNINA