LEADER 04183nam 2200817Ia 450 001 9910780706903321 005 20200520144314.0 010 $a1-282-71436-8 010 $a9786612714368 010 $a3-11-020321-9 024 7 $a10.1515/9783110203219 035 $a(CKB)2500000000002754 035 $a(EBL)511787 035 $a(OCoLC)651048124 035 $a(SSID)ssj0000420661 035 $a(PQKBManifestationID)11296193 035 $a(PQKBTitleCode)TC0000420661 035 $a(PQKBWorkID)10405790 035 $a(PQKB)10703013 035 $a(MiAaPQ)EBC511787 035 $a(DE-B1597)33451 035 $a(OCoLC)840443909 035 $a(OCoLC)948655947 035 $a(DE-B1597)9783110203219 035 $a(Au-PeEL)EBL511787 035 $a(CaPaEBR)ebr10373465 035 $a(CaONFJC)MIL271436 035 $a(PPN)175534527 035 $a(EXLCZ)992500000000002754 100 $a20091012d2010 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aIntegral representation theory$b[electronic resource] $eapplications to convexity, banach spaces and potential theory /$fJaroslav Lukes? ... [et al.] 210 $aBerlin ;$aNew York $cWalter de Gruyter$dc2010 215 $a1 online resource (731 p.) 225 1 $aDe Gruyter studies in mathematics ;$v35 300 $aDescription based upon print version of record. 311 $a3-11-020320-0 320 $aIncludes bibliographical references and index. 327 $t Frontmatter -- $tContents -- $t1 Prologue -- $t2 Compact convex sets -- $t3 Choquet theory of function spaces -- $t4 Affine functions on compact convex sets -- $t5 Perfect classes of functions and representation of affine functions -- $t6 Simplicial function spaces -- $t7 Choquet theory of function cones -- $t8 Choquet-like sets -- $t9 Topologies on boundaries -- $t10 Deeper results on function spaces and compact convex sets -- $t11 Continuous and measurable selectors -- $t12 Constructions of function spaces -- $t13 Function spaces in potential theory and the Dirichlet problem -- $t14 Applications -- $t Backmatter 330 $aThis monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications 410 0$aDe Gruyter studies in mathematics ;$v35. 606 $aFunctional analysis 606 $aConvex domains 606 $aBanach spaces 606 $aPotential theory (Mathematics) 606 $aIntegral representations 610 $aConvex Analysis. 610 $aDirichlet Problem. 610 $aFunctional Analysis. 610 $aPartial Differential Equation. 610 $aPotential Theory. 615 0$aFunctional analysis. 615 0$aConvex domains. 615 0$aBanach spaces. 615 0$aPotential theory (Mathematics) 615 0$aIntegral representations. 676 $a515.7 686 $aSK 600$2rvk 700 $aLuke?$b Jaroslav, $059225 701 $aLukes?$b Jaroslav$f1940-$059225 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910780706903321 996 $aIntegral representation theory$93832134 997 $aUNINA