LEADER 04333nam 22005892 450 001 9910780252903321 005 20220912170148.0 010 $a9780511020780 010 $a0-511-14814-3 010 $a0-511-58397-4 010 $a0-511-02078-3 035 $a(CKB)111087027192038 035 $a(SSID)ssj0000182865 035 $a(PQKBManifestationID)11167801 035 $a(PQKBTitleCode)TC0000182865 035 $a(PQKBWorkID)10193749 035 $a(PQKB)11788909 035 $a(UkCbUP)CR9780511583971 035 $a(MiAaPQ)EBC3004541 035 $a(Au-PeEL)EBL3004541 035 $a(CaPaEBR)ebr10022037 035 $a(OCoLC)923616541 035 $a(PPN)26127872X 035 $a(EXLCZ)99111087027192038 100 $a20090612d2002|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to quantum fields on a lattice $e'a robust mate' /$fJan Smit$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2002. 215 $a1 online resource (xii, 271 pages) $cdigital, PDF file(s) 225 1 $aCambridge lecture notes in physics ;$v15 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-89051-9 320 $aIncludes bibliographical references (p. 261-266) and index. 327 $tQED, QCD, and confinement --$tScalar field --$tPath-integral and lattice regularization --$tPath integral in quantum mechanics --$tRegularization by discretization --$tAnalytic continuation to imaginary time --$tSpectrum of the transfer operator --$tLatticization of the scalar field --$tTransfer operator for the scalar field --$tFourier transformation on the lattice --$tFree scalar field --$tParticle interpretation --$tBack to real time --$tO(n) models --$tGoldstone bosons --$tO(n) models as spin models --$tPhase diagram and critical line --$tWeak-coupling expansion --$tRenormalization --$tRenormalization-group beta functions --$tHopping expansion --$tLuscher-Weisz solution --$tNumerical simulation --$tReal-space renormalization group and universality --$tUniversality at weak coupling --$tTriviality and the Standard Model --$tGauge field on the lattice --$tQED action --$tQCD action --$tLattice gauge field --$tGauge-invariant lattice path integral --$tCompact and non-compact Abelian gauge theory --$tHilbert space and transfer operator --$tThe kinetic-energy operator --$tHamiltonian for continuous time --$tWilson loop and Polyakov line --$tU(1) and SU(n) gauge theory --$tPotential at weak coupling --$tAsymptotic freedom --$tStrong-coupling expansion --$tPotential at strong coupling --$tConfinement versus screening --$tGlueballs --$tCoulomb phase, confinement phase --$tMechanisms of confinement --$tScaling and asymptotic scaling, numerical results --$tFermions on the lattice --$tNaive discretization of the Dirac action --$tSpecies doubling --$tWilson's fermion method. 330 $aThis book provides a concrete introduction to quantum fields on a lattice: a precise and non-perturbative definition of quantum field theory obtained by replacing continuous space-time by a discrete set of points on a lattice. The path integral on the lattice is explained in concrete examples using weak and strong coupling expansions. Fundamental concepts such as 'triviality' of Higgs fields and confinement of quarks and gluons into hadrons are described and illustrated with the results of numerical simulations. The book also provides an introduction to chiral symmetry and chiral gauge theory, as well as quantized non-abelian gauge fields, scaling and universality. Based on the lecture notes of a course given by the author, this book contains many explanatory examples and exercises, and is suitable as a textbook for advanced undergraduate and graduate courses. 410 0$aCambridge lecture notes in physics ;$v15. 606 $aQuantum field theory 606 $aLattice theory 615 0$aQuantum field theory. 615 0$aLattice theory. 676 $a530.14/3 700 $aSmit$b Jan$f1943-$01473845 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910780252903321 996 $aIntroduction to quantum fields on a lattice$93687179 997 $aUNINA