LEADER 01405nam1 2200385 450 001 990003008990203316 005 20071109105424.0 035 $a000300899 035 $aUSA01000300899 035 $a(ALEPH)000300899USA01 035 $a000300899 100 $a20071109g----9999km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $a<> ospedali cattolici$ei modelli statunitensi e l'esperienza giuridica italiana : profili comparatistici$fAdelaide Madera 210 $aMilano$cA. Giuffre 215 $av.$d23 cm 225 2 $aPubblicazioni della Facoltà di giurisprudenza dell'Università di Messina 410 0$aPubblicazioni della Facoltà di giurisprudenza dell'Università di Messina$12001 463 \1$1001990003009030203316$12001 $a<1> : <> ospedali cattolici negli U.S.A. 463 \1$1001990003009080203316$12001 $a<<2: Gli>> enti ospedalieri cattolici$e(prospettiva comparatistica) 606 0 $aOspedali religiosi$xDiritto 676 $a344.4503211 700 1$aMADERA,$bAdelaide$0477986 801 0$aIT$bsalbc$gISBD 912 $a990003008990203316 951 $aX 10 XVII$bG.$cX 10 XVII 959 $aBK 969 $aGIU 979 $aIANNONE$b90$c20071109$lUSA01$h1044 979 $aIANNONE$b90$c20071109$lUSA01$h1054 979 $aCHIARA$b90$c20120125$lUSA01$h1154 996 $aOspedali cattolici$9265809 997 $aUNISA LEADER 03172nam 22006252 450 001 9910780252403321 005 20151005020622.0 010 $a0-511-15790-8 010 $a0-511-60635-4 010 $a0-511-02054-6 035 $a(CKB)111087027191002 035 $a(SSID)ssj0000108409 035 $a(PQKBManifestationID)11138223 035 $a(PQKBTitleCode)TC0000108409 035 $a(PQKBWorkID)10036159 035 $a(PQKB)11252318 035 $a(UkCbUP)CR9780511606359 035 $a(Au-PeEL)EBL3004539 035 $a(CaPaEBR)ebr10021413 035 $a(OCoLC)847049388 035 $a(MiAaPQ)EBC3004539 035 $a(PPN)26132019X 035 $a(EXLCZ)99111087027191002 100 $a20090910d2002|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBa?cklund and Darboux transformations $egeometry and modern applications in soliton theory /$fC. Rogers, W.K. Schief$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2002. 215 $a1 online resource (xvii, 413 pages) $cdigital, PDF file(s) 225 1 $aCambridge texts in applied mathematics ;$v30 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-01288-0 311 $a0-521-81331-X 320 $aIncludes bibliographical references and index. 330 $aThis book describes the remarkable connections that exist between the classical differential geometry of surfaces and modern soliton theory. The authors also explore the extensive body of literature from the nineteenth and early twentieth centuries by such eminent geometers as Bianchi, Darboux, Ba?cklund, and Eisenhart on transformations of privileged classes of surfaces which leave key geometric properties unchanged. Prominent amongst these are Ba?cklund-Darboux transformations with their remarkable associated nonlinear superposition principles and importance in soliton theory. It is with these transformations and the links they afford between the classical differential geometry of surfaces and the nonlinear equations of soliton theory that the present text is concerned. In this geometric context, solitonic equations arise out of the Gauß-Mainardi-Codazzi equations for various types of surfaces that admit invariance under Ba?cklund-Darboux transformations. This text is appropriate for use at a higher undergraduate or graduate level for applied mathematicians or mathematical physics. 410 0$aCambridge texts in applied mathematics ;$v30. 517 3 $aBa?cklund & Darboux Transformations 606 $aSolitons 606 $aBa?cklund transformations 606 $aDarboux transformations 615 0$aSolitons. 615 0$aBa?cklund transformations. 615 0$aDarboux transformations. 676 $a530.124 700 $aRogers$b C.$0344299 702 $aSchief$b W. K$g(Wolfgang Karl),$f1964- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910780252403321 996 $aBäcklund and Darboux transformations$9168076 997 $aUNINA