LEADER 02423nam 2200589Ia 450 001 9910779697803321 005 20230725055916.0 010 $a1-299-44426-1 010 $a0-7391-3446-9 035 $a(CKB)2550000001018401 035 $a(EBL)1163735 035 $a(OCoLC)854971457 035 $a(SSID)ssj0000860000 035 $a(PQKBManifestationID)11519446 035 $a(PQKBTitleCode)TC0000860000 035 $a(PQKBWorkID)10883770 035 $a(PQKB)11537387 035 $a(MiAaPQ)EBC1163735 035 $a(Au-PeEL)EBL1163735 035 $a(CaPaEBR)ebr10685825 035 $a(CaONFJC)MIL475676 035 $a(EXLCZ)992550000001018401 100 $a20101220d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAuthorial ethics$b[electronic resource] $ehow writers abuse their calling /$fRobert Hauptman 210 $aLanham, MD $cLexington Books$dc2011 215 $a1 online resource (362 p.) 300 $aDescription based upon print version of record. 311 $a0-7391-8597-7 311 $a0-7391-3444-2 320 $aIncludes bibliographical references and index. 327 $aCover; Half title; Title; Coyright; Contents; Foreword; Preface; Preliminaries; 1 Introduction; The Humanities; 2 Journalism; 3 History; 4 Life Writing; 5 Literature; 6 Art; The Social Sciences; 7 Psychology and Sociology; 8 Anthropology; The Sciences; 9 Physics and Biomedicine; Other Areas; 10 Business and Economics; 11 Law; Extrapolation; 12 A Concise Theory of Authorial Ethics; 13 Concluding Remarks; References; Index; About the Author 330 $aAuthorial Ethics is a study of the ways in which writers abrogate their implicit and explicit commitment to honesty and truth. It encompasses all disciplines and is both theoretical and applied. 606 $aAcademic writing$xMoral and ethical aspects 606 $aAuthorship$xMoral and ethical aspects 606 $aTruthfulness and falsehood 615 0$aAcademic writing$xMoral and ethical aspects. 615 0$aAuthorship$xMoral and ethical aspects. 615 0$aTruthfulness and falsehood. 676 $a808/.02 700 $aHauptman$b Robert$f1941-$01545661 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910779697803321 996 $aAuthorial ethics$93800689 997 $aUNINA LEADER 02995nam 22006975 450 001 9911001456503321 005 20260128110235.0 010 $a3-662-71224-5 024 7 $a10.1007/978-3-662-71224-5 035 $a(CKB)38696235700041 035 $a(MiAaPQ)EBC32068813 035 $a(Au-PeEL)EBL32068813 035 $a(DE-He213)978-3-662-71224-5 035 $a(EXLCZ)9938696235700041 100 $a20250501d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElliptic Functions and Modular Forms /$fby Max Koecher, Aloys Krieg 205 $a1st ed. 2025. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2025. 215 $a1 online resource (373 pages) 225 1 $aUniversitext,$x2191-6675 311 08$a3-662-71223-7 320 $aIncludes bibliographical references and index. 327 $a1 Elliptic functions -- 2 Geometry in the upper-half plane and the action of the modular group -- 3 Modular forms -- 4 The Hecke-Petersson theory -- 5 Theta series. 330 $aThe theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass?s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic. 410 0$aUniversitext,$x2191-6675 606 $aFunctions of complex variables 606 $aNumber theory 606 $aGeometry, Hyperbolic 606 $aGroup theory 606 $aFunctions of a Complex Variable 606 $aNumber Theory 606 $aHyperbolic Geometry 606 $aGroup Theory and Generalizations 606 $aFormes modulars$2thub 606 $aFuncions el·líptiques$2thub 608 $aLlibres electrònics$2thub 615 0$aFunctions of complex variables. 615 0$aNumber theory. 615 0$aGeometry, Hyperbolic. 615 0$aGroup theory. 615 14$aFunctions of a Complex Variable. 615 24$aNumber Theory. 615 24$aHyperbolic Geometry. 615 24$aGroup Theory and Generalizations. 615 7$aFormes modulars 615 7$aFuncions el·líptiques 676 $a516.9 700 $aKoecher$b Max$062857 702 $aKrieg$b Aloys 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911001456503321 996 $aElliptic Functions and Modular Forms$94384381 997 $aUNINA