LEADER 05272oam 2200541 450 001 9910779692803321 005 20190911112728.0 010 $a1-299-46258-8 010 $a981-4434-71-X 035 $a(OCoLC)840491992 035 $a(MiFhGG)GVRL8RFW 035 $a(EXLCZ)992550000001019243 100 $a20130416h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aScanning probe microscopy for energy research /$feditors, Dawn A. Bonnell, The University of Pennsylvania, USA, Sergei V. Kalinin, Oak Ridge National Laboratory, USA 210 $a[Hackensack] N.J. $cWorld Scientific$dc2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (xvi, 602 pages, 21 pages of plates) $cillustrations (some color) 225 1 $aWorld scientific series in nanoscience and nanotechnology,$x2301-301X ;$vv. 7 300 $aDescription based upon print version of record. 311 $a981-4434-70-1 320 $aIncludes bibliographical references and index. 327 $aPreface; CONTENTS; List of Color Plates; Introduction; Chapter 1 Local Probes in the Next Decade of Energy Research: Bridging Macroscopic and Atomic Worlds D. A. Bonnell and S. V. Kalinin; 1. The Energy Challenge; 2. The Need for Local Characterization; 3. Science and Technology of Renewable and Sustainable Options; 3.1. Solar cells and photo voltaic devices; Fuel cells; Batteries; 4. Frontiers of Scanning Probe Microscopy; 4.1. Probing local electrical properties; 4.2. Probing local dielectric properties; 4.3. Probing local electrochemical properties 327 $a4.4. Future impact of SPM in energy research Acknowledgments; References; I. Scanning Probes for Energy Harvesting Systems: Photovoltaics and Solar Cells; Chapter 2 Electrical Scanning Probe Microscopy on Solar Cell Materials R. Giridharagopal, G. E. Rayermann and D. S. Ginger; 1. Introduction; 2. Conducting Atomic Force Microscopy (cAFM); 3. Photoconductive Atomic Force Microscopy (pcAFM); 4. AC-Mode AFM; 5. Electrostatic Force Microscopy (EFM); 6. Scanning Kelvin Probe Microscopy (SKPM); 7. Time-Resolved Electrostatic Force Microscopy (trEFM); 8. Conclusions and Future Outlook 327 $aAcknowledgments References; Chapter 3 Organic Solar Cell Materials and Devices Characterized by Conductive and Photoconductive Atomic Force Microscopy X.-D. Dang, M. Guide and T.-Q. Nguyen; 1. Introduction; 2. Basic Operation of Organic Solar Cells; 3. Fundamental Principles of Conductive and Photoconductive AFM; 3.1. Conductive atomic force microscopy; 3.2. Photoconductive atomic force microscopy; 3.3. pc-AFM devices versus bulk solar cell devices; 4. Applications of c-AFM and pc-AFM for Characterization of Organic Solar Cell Materials and Devices 327 $a4.1. Local conductivity variation and charge transport 4.2. Probing internal structure of photoactive layers; 4.3. Assigning phase separation in BHJ organic solar cells; 4.4. Local incident photon conversion efficiency; 4.5. Origin of open-circuit voltage of organic solar cells; 5. Summary and Outlook; Acknowledgments; References; Chapter 4 Kelvin Probe Force Microscopy for Solar Cell Applications T. Glatzel; 1. Introduction; 2. Experimental Technique and Working Modes; 2.1. The Kelvin Principle; 2.2. Technical realization; 3. Application to Solar Cells 327 $a3.1. Cu(In, Ga)(S, Se)2 based solar cells 3.1.1. Surface properties; 3.1.2. Grain boundaries; 3.1.3. Surface photovoltage analysis; 3.1.4. Interface properties; 3.2. Organic solar cells; 3.2.1. Polymer/fullerene solar cells; 3.2.2. Dye-sensitized solar cells; References; Chapter 5 Reversible Rectification in Sub-Monolayer Molecular P-N Junctions: Towards Nanoscale Photovoltaic Studies J. A. Smerdon, N. C. Giebink and J. R. Guest; 1. Introduction; 2. Transport in a D-A HJ at the Molecular Scale; 3. Ultrahigh Vacuum Scanning Tunneling Microscopy and Spectroscopy 327 $a4. Promise and Challenges of Laser-Assisted STM 330 $aEfficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality h 410 0$aWorld Scientific series in nanoscience and nanotechnology ;$vv. 7. 606 $aElectric batteries$xResearch 606 $aScanning probe microscopy$xIndustrial applications 615 0$aElectric batteries$xResearch. 615 0$aScanning probe microscopy$xIndustrial applications. 676 $a621.31/2028 702 $aBonnell$b Dawn A. 702 $aKalinin$b Sergei V. 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910779692803321 996 $aScanning probe microscopy for energy research$93800641 997 $aUNINA