LEADER 05243oam 2200589 450 001 9910779690503321 005 20190911112724.0 010 $a1-299-46212-X 010 $a1-84816-812-8 035 $a(OCoLC)845670370 035 $a(MiFhGG)GVRL8REX 035 $a(EXLCZ)992550000001019205 100 $a20130828h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum gases $efinite temperatures and non-equilibrium dynamics /$feditors, Nick Proukakis, Newcastle University, UK [and others] 210 $aLondon $cImperial College Press ;$aSingapore $cDistributed by World Scientific$dc2013 210 1$aLondon :$cImperial College Press,$d[2013] 210 4$d?2013 215 $a1 online resource (xxiv, 554 pages) $cillustrations 225 0 $aCold Atoms,$x2045-9734 ;$v1 300 $aDescription based upon print version of record. 311 $a1-84816-810-1 320 $aIncludes bibliographical references (p. 461-537) and indexes. 327 $aPreface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground? 327 $a1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics 327 $a1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements 327 $a3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') 327 $a3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements 327 $aPart II. Ultracold Bosonic Gases: Theoretical Modelling 330 $aThe 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap 410 0$aCold atoms ;$vv. 1. 606 $aCold gases 606 $aQuantum theory 606 $aGases$xThermal properties 606 $aPhase transformations (Statistical physics) 615 0$aCold gases. 615 0$aQuantum theory. 615 0$aGases$xThermal properties. 615 0$aPhase transformations (Statistical physics) 676 $a530.4/74 676 $a539 702 $aProukakis$b Nick 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910779690503321 996 $aQuantum gases$93800619 997 $aUNINA