LEADER 05784nam 22008293u 450 001 9910779280403321 005 20230802005134.0 010 $a1-280-66982-9 010 $a9786613646750 010 $a981-4374-92-X 035 $a(CKB)2550000000101743 035 $a(EBL)919102 035 $a(OCoLC)794328397 035 $a(SSID)ssj0000658237 035 $a(PQKBManifestationID)12242975 035 $a(PQKBTitleCode)TC0000658237 035 $a(PQKBWorkID)10681321 035 $a(PQKB)11409111 035 $a(WSP)00002672 035 $a(MiAaPQ)EBC919102 035 $a(EXLCZ)992550000000101743 100 $a20131125d2012|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum Dissipative Systems$b[electronic resource] 205 $a4th ed. 210 $aSingapore $cWorld Scientific Publishing Company$d2012 215 $a1 online resource (587 p.) 300 $aDescription based upon print version of record. 311 $a981-4374-91-1 320 $aIncludes bibliographical references (p. 539-560) and index. 327 $aPreface; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; Contents; 1 Introduction; I GENERAL THEORY OF OPEN QUANTUM SYSTEMS; 2 Diverse limited approaches: a brief survey; 2.1 Langevin equation for a damped classical system; 2.2 New schemes of quantization; 2.3 Traditional system-plus-reservoir methods; 2.3.1 Quantum-mechanical master equations for weak coupling; 2.3.2 Lindblad theory; 2.3.3 Operator Langevin equations for weak coupling; 2.3.4 Generalized quantum Langevin equation; 2.3.5 Generalized quasiclassical Langevin equation 327 $a2.3.6 Phenomenological methods2.4 Stochastic dynamics in Hilbert space; 3 System-plus-reservoir models; 3.1 Harmonic oscillator bath with linear coupling; 3.1.1 The Hamiltonian of the global system; 3.1.2 The road to generalized Langevin equations; 3.1.3 Phenomenological modeling of friction; 3.1.4 Quantum statistical properties of the stochastic force; 3.1.5 Displacement correlation function; 3.1.6 Thermal propagator and imaginary-time correlations; 3.1.7 Ohmic and frequency-dependent damping; 3.1.8 Fractional Langevin equation; 3.1.9 Rubin model 327 $a3.1.10 Interaction of a charged particle with the radiation field3.2 Ergodicity; 3.3 The spin-boson model; 3.3.1 The model Hamiltonian; 3.3.2 Flux and charge qubits: reduction to the spin-boson model; 3.4 Microscopic models; 3.4.1 Acoustic polaron: one-phonon and two-phonon coupling; 3.4.2 Optical polaron; 3.4.3 Interaction with fermions (normal and superconducting); 3.4.4 Superconducting tunnel junction; 3.5 Charging and environmental effects in tunnel junctions; 3.5.1 The global system for single electron tunneling; 3.5.2 Resistor, inductor, and transmission lines 327 $a3.5.3 Charging effects in junctions3.6 Nonlinear quantum environments; 4 Imaginary-time approach and equilibrium dynamics; 4.1 General concepts; 4.1.1 Density matrix and reduced density matrix; 4.1.2 Imaginary-time path integral; 4.2 Effective action and equilibrium density matrix; 4.2.1 Open system with bilinear coupling to a harmonic reservoir; 4.2.2 State-dependent memory friction; 4.2.3 Spin-boson model; 4.2.4 Acoustic polaron and defect tunneling: one-phonon coupling; 4.2.5 Acoustic polaron: two-phonon coupling; 4.2.6 Tunneling between surfaces: one-phonon coupling; 4.2.7 Optical polaron 327 $a4.2.8 Heavy particle in a metal4.2.9 Heavy particle in a superconductor; 4.2.10 Effective action of a junction; 4.2.11 Electromagnetic environment; 4.3 Partition function of the open system; 4.3.1 General path integral expression; 4.3.2 Semiclassical approximation; 4.3.3 Partition function of the damped harmonic oscillator; 4.3.4 Functional measure in Fourier space; 4.3.5 Partition function of the damped harmonic oscillator revisited; 4.4 Quantum statistical expectation values in phase space; 4.4.1 Generalized Weyl correspondence; 4.4.2 Generalized Wigner function and expectation values 327 $a5 Real-time path integrals and nonequilibrium dynamics 330 $aStarting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 and 2008 as enlarged second and third editions - delves significantl 606 $aMathematical physics 606 $aPath integrals 606 $aQuantum theory 606 $aThermodynamics 606 $aQuantum theory 606 $aMathematical physics 606 $aThermodynamics 606 $aPath integrals 606 $aPhysics$2HILCC 606 $aPhysical Sciences & Mathematics$2HILCC 606 $aAtomic Physics$2HILCC 615 4$aMathematical physics. 615 4$aPath integrals. 615 4$aQuantum theory. 615 4$aThermodynamics. 615 0$aQuantum theory 615 0$aMathematical physics 615 0$aThermodynamics 615 0$aPath integrals 615 7$aPhysics 615 7$aPhysical Sciences & Mathematics 615 7$aAtomic Physics 676 $a530.12 700 $aWeiss$b Ulrich$053385 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910779280403321 996 $aQuantum Dissipative Systems$9337329 997 $aUNINA