LEADER 03832nam 2200589 a 450 001 9910779071403321 005 20230802004613.0 010 $a981-4374-73-3 035 $a(CKB)2550000000087460 035 $a(EBL)846113 035 $a(SSID)ssj0000646889 035 $a(PQKBManifestationID)11435710 035 $a(PQKBTitleCode)TC0000646889 035 $a(PQKBWorkID)10590006 035 $a(PQKB)11214081 035 $a(MiAaPQ)EBC846113 035 $a(WSP)00002593 035 $a(Au-PeEL)EBL846113 035 $a(CaPaEBR)ebr10529363 035 $a(CaONFJC)MIL498470 035 $a(OCoLC)877768014 035 $a(EXLCZ)992550000000087460 100 $a20120229d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNanostructured titanium dioxide materials$b[electronic resource] $eproperties, preparation and applications /$fAlireza Khataee, G. Ali Mansoori 210 $aHackensack, N.J. $cWorld Scientific$d2012 215 $a1 online resource (205 p.) 300 $aDescription based upon print version of record. 311 $a981-4374-72-5 320 $aIncludes bibliographical references and index. 327 $aBrief Summary; Contents; Chapter 1 - Introduction; Chapter 2 - Properties of Titanium Dioxide and Its Nanoparticles; 2.1. Structural and Crystallographic Properties; 2.2. Photocatalytic Properties of Nanostructured Titanium Dioxide; Chapter 3 - Preparation of Nanostructured Titanium Dioxide and Titanates; 3. 1. Vapor Deposition Method; 3. 2. Solvothermal Method; 3. 3. Electrochemical Approaches; 3. 4. Solution Combustion Method; 3. 5. Microemulsion Technique; 3. 6. Micelle and Inverse Micelle Methods; 3. 7. Combustion Flame-Chemical Vapor Condensation Process; 3. 8. Sonochemical Reactions 327 $a3. 9. Plasma Evaporation3. 10. Hydrothermal Processing; 3. 11. Sol-Gel Technology; Chapter 4 - Applications of Nanostructured Titanium Dioxide; 4.1. Dye-Sensitized Solar Cells; 4.2. Hydrogen Production; 4.3. Hydrogen Storage; 4.4. Sensors; 4.5. Batteries; 4.6. Cancer Prevention and Treatment; 4.7. Antibacterial and Self-Cleaning Applications; 4.8. Electrocatalysis; 4.9. Photocatalytic Applications of Titanium Dioxide Nanomaterials; 4.9.1. Pure Titanium Dioxide Nanomaterials; 4.9.2. TiO2-based Nanoclays; 4.9.3. Metal ions and Non-metal Atoms Doped Nanostructured TiO2 327 $aChapter 5 - Supported and Immobilized Titanium Dioxide Nanomaterials5.1. Immobilization on Glass Substrates; 5.2. Immobilization on Stone, Ceramic, Cement and Zeolite; 5.3. Immobilization on Metallic and Metal Oxide Materials; 5.4. Immobilization on Polymer Substrates; Discussion and Conclusions; References; Glossary; Index 330 $aDuring the past decade, research and development in the area of synthesis and applications of different nanostructured titanium dioxide have become tremendous. This book briefly describes properties, production, modification and applications of nanostructured titanium dioxide focusing in particular on photocatalytic activity. The physicochemical properties of nanostructured titanium dioxide are highlighted and the links between properties and applications are emphasized. The preparation of TiO2 nanomaterials, including nanoparticles, nanorods, nanowires, nanosheets, nanofibers, and nanotubes a 606 $aNanostructured materials 606 $aTitanium dioxide 615 0$aNanostructured materials. 615 0$aTitanium dioxide. 676 $a620.189322 700 $aKhataee$b Alireza$01552026 701 $aMansoori$b G. Ali$0303811 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910779071403321 996 $aNanostructured titanium dioxide materials$93811802 997 $aUNINA LEADER 01867nam 2200397z- 450 001 9910346913203321 005 20210212 010 $a1000019173 035 $a(CKB)4920000000101390 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/59634 035 $a(oapen)doab59634 035 $a(EXLCZ)994920000000101390 100 $a20202102d2010 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSOFC modelling and parameter identification by means of impedance spectroscopy 210 $cKIT Scientific Publishing$d2010 215 $a1 online resource (VIII, 147 p. p.) 225 1 $aSchriften des Instituts für Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Werkstoffe der Elektrotechnik 311 08$a3-86644-538-5 330 $aA high resolution electrochemical impedance spectroscopy study on anode supported single cells (ASC) is presented. The cells were characterised over a broad range of operating conditions, including different temperatures, current densities and various cathode and anode gas compositions.The analysis of the distribution of relaxation times combined with the numeric accuracy of a CNLS fit enabled the identification of five different processes contributing to the total polarisation loss of an ASC. 606 $aTechnology: general issues$2bicssc 610 $aDistribution of Relaxation Times 610 $aImpedance 610 $aModelling 610 $aSOFC 610 $aSolid Oxide Fuel Cell 615 7$aTechnology: general issues 700 $aLeonide$b André$4auth$01311890 906 $aBOOK 912 $a9910346913203321 996 $aSOFC modelling and parameter identification by means of impedance spectroscopy$93030520 997 $aUNINA