LEADER 05445nam 2200673 a 450 001 9910779010503321 005 20230802005129.0 010 $a1-280-66957-8 010 $a9786613646507 010 $a981-4360-63-5 035 $a(CKB)2550000000101535 035 $a(EBL)919082 035 $a(OCoLC)794328378 035 $a(SSID)ssj0000657698 035 $a(PQKBManifestationID)12249486 035 $a(PQKBTitleCode)TC0000657698 035 $a(PQKBWorkID)10656017 035 $a(PQKB)10266557 035 $a(MiAaPQ)EBC919082 035 $a(WSP)00002641 035 $a(Au-PeEL)EBL919082 035 $a(CaPaEBR)ebr10563525 035 $a(CaONFJC)MIL364650 035 $a(EXLCZ)992550000000101535 100 $a20120611d2012 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNon-equilibrium soft matter physics$b[electronic resource] /$feditors, Shigeyuki Komura, Takao Ohta 210 $aSingapore $cWorld Scientific Pub. Co.$d2012 215 $a1 online resource (435 p.) 225 1 $aSeries in soft condensed matter,$x1793-737X ;$vv. 4 300 $aDescription based upon print version of record. 311 $a981-4360-62-7 320 $aIncludes bibliographical references and index. 327 $aForeword; Preface; Contents; 1. Onsager's Variational Principle in Soft Matter Dynamics M. Doi; 1. Introduction; 2. Particle Motion in Viscous Fluid; 2.1. Stokesian hydrodynamics; 2.2. Hydrodynamic reciprocal relation; 2.3. Hydrodynamic variational principle; 3. Onsager's Variational Principle; 3.1. Onsager's kinetic equation; 3.2. Validity of the variational principle; 3.3. Merit of the variational principle; 3.4. Reciprocal relation in the kinetic equation; 3.5. Forces needed to controll the state variables; 4. Brownian Motion; 4.1. Diffusion equation 327 $a4.2. Reciprocal relation in the diffusion equation 4.3. Forces acting on the semi-permeable membrane; 5. Rotational Brownian Motion; 5.1. State variables of a rod-like particle; 5.2. Diffusion equation for ( , ); 5.3. Diffusion equation for (u); 5.4. Diffusion equation in flow field; 5.5. Expression for the stress tensor; 6. Coupling between Diffusion and Flow; 6.1. Diffusion in concentrated solutions; 6.2. Coupling between solute diffusion and solution flow; 6.3. Phase separation; 7. Gel Dynamics; 8. Liquid Crystals; 9. Conclusion; Acknowledgments 327 $aAppendix A. Proof of the Hydrodynamic Reciprocal Relation References; 2. Rheo-Dielectric Behavior of Soft Matters H. Watanabe, Y. Matsumiya, K. Horio, Y. Masubuchi and T. Uneyama; 1. Introduction; 2. Basics of Dielectric Relaxation; 2.1. Instrumentation; 2.2. Phenomenological framework; 2.3. Molecular expression of (t); 3. Rheo-Dielectric Behavior of Polymers; 3.1. Glassy relaxation and rubbery relaxation; 3.2. Rheo-dielectric behavior of entangled chain; 3.2.1. Overview; 3.2.2. Flow-induced equilibration of entanglement segments; 3.2.3. Mutual equilibration number of entanglement segments 327 $a3.2.4. Lack of flow-induced dielectric acceleration for linear chain 4. Rheo-Dielectric Behavior of Liquid Crystalline Materials; 4.1. Rheo-dielectric behavior of nematic 7CB; 4.2. Rheo-dielectric behavior of smectic 8CB; 5. Rheo-Dielectric Behavior of Salt/PEO Composite Systems; 5.1. Overview of rheo-dielectric behavior of LiClO4/PEO System; 5.2. Flow-induced enhancement of Li+ mobility; 6. Rheo-Dielectric Behavior of Carbon Black Suspensions; 7. Concluding Remarks; Acknowledgment; Appendix A. Rheo-Dielectric Telaxation Function of Type A Chain; A.1. General; A.2. Analysis under steady shear 327 $aA.3. Analysis under LAOS Appendix B. Macdonald Theory for Electrode Polarization; References; 3. Morphology and Rheology of Immiscible Polymer Blends in Electric and Shear Flow Fields H. Orihara; 1. Introduction; 2. Experimental System for Observing Three-Dimensional Structures; 3. Droplet Coalescence Process Under Electric Fields; 3.1. 3D observation of coalescence process; 3.2. Scaling property and hierarchical model; 4. Shear Modulus of Columnar Structure Formed in an Immiscible Polymer Blend Under Electric Fields; 4.1. 3D observation of columnar structure and shear modulus 327 $a4.2. Theoretical derivation of static shear modulus 330 $aSoft matter is a concept which covers polymers, liquid crystals, colloids, amphiphilic molecules, glasses, granular and biological materials. One of the fundamental characteristic features of soft matter is that it exhibits various mesoscopic structures originating from a large number of internal degrees of freedom of each molecule. Due to such intermediate structures, soft matter can easily be brought into non-equilibrium states and cause non-linear responses by imposing external fields such as an electric field, a mechanical stress or a shear flow. Volume 4 of the series in Soft Condensed Ma 410 0$aSeries in soft condensed matter ;$vv. 4. 606 $aCondensed matter 606 $aEquilibrium 615 0$aCondensed matter. 615 0$aEquilibrium. 676 $a530.41 701 $aKomura$b Shigeyuki$01567315 701 $aOhta$b Takao$01567316 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910779010503321 996 $aNon-equilibrium soft matter physics$93838673 997 $aUNINA