LEADER 06326nam a2200277 i 4500 001 991002879119707536 008 160129s2014 sp a 001 0 eng d 020 $a9783319051932 035 $ab14247537-39ule_inst 082 04$a620$223 100 1 $aOller, Sergio$0481176 245 10$aNonlinear Dynamics of Structures /$cby Sergio Oller 260 $aBarcelona :$bCIMNE ; $aCham :$bSpringer,$c2014 300 $a1 v. (various pagings) :$bill. ;$c24 cm 440 $aLecture Notes on Numerical Methods in Engineering and Sciences 500 $aIncludes index 505 0 $aIntroduction -- Thermodynamic Basis of the Motion Equation -- Introduction -- Kinematics of the Deformable Bodies -- Basic definitions of tensors describing the kinematics of a point in the space -- Strain Measurements -- Mechanical variables relations -- The Objective Derivative -- Velocity -- Stress Measurements -- Thermodynamics Basis -- First Law of Thermodynamics -- Second Law of Thermodynamics -- Lagrangian local form of Mechanical Dissipation -- Internal Variables -- Dynamic Equilibrium Equation for a Discrete Solid -- Different types of Nonlinear Dynamic Problems -- Materials.Nonlinearity -- Solution of the Motion Equation -- Introduction -- Explicit-implicit solution -- Implicit solution -- Equilibrium at time (t + ?t) -- Equilibrium solution in time ?implicit methods -- Newmark?s procedure -- Houbolt?s procedure -- Solution of the nonlinear-equilibrium equations system -- Newton-Raphson Method -- Modified Newton-Raphson Method -- Convergence accelerators -- Aitken accelerator or extrapolation algorithm -- B.F.G.S Algorithms -- Secant-Newton algorithms -- ?Line-Search?algorithms -- Solution control algorithms ? ?Arc-Length? -- Ecuación de control de desplazamiento ? Superficie esférica -- Convergence Analysis of the dynamic solution -- Introduction -- Reduction to the linear elastic problem -- Solution of second-order linear symmetric systems -- The dynamic equilibrium equation and its convergence-consistency and stability -- Solution stability of second ?order linear symmetric systems -- Stability analysis procedure -- Determination of A and L for ?Newmark? -- Determination of A and L for central differences- Newmark?s explicit form -- Solution stability of second-order non-linear symmetric systems -- Stability of the linearized equation -- Energy conservation algorithms -- APPENDIX - 1 -- APPENDIX - 2 -- Time-independent models -- Introduction -- Elastic behavior -- Invariant of the tensors -- Non-linear Elasticity -- Introduction -- Non-linear hyper-elastic model -- Stress based hyper-elastic model -- Stability Postulates -- Plasticity in small deformations -- Introduction -- Discontinuity behavior or plastic yield criterion -- Elasto-Plastic behavior -- Levy-Mises theory -- Prandtl-Reus theory -- The classic plasticity theory -- Plastic unit or Specific work -- Plastic loading surface. Plastic hardening variable -- Isotropic hardening -- Kinematic hardening -- Stress-Strain relation. Plastic consistency and Tangent rigidity -- Drucker?s stability postulate and maximum plastic dissipation -- Stability condition -- Local stability -- Global stability -- Condition of Unicity of Solution -- Kuhn-Tucker. Loading-unloading condition -- Yield or plastic discontinuity classic criteria -- Rankine criterion of maximum tension stress -- Tresca criterion of maximum shear stress -- Von Mises criterion of octahedral shear stress -- Mohr-Coulomb criterion of octahedral shear stress -- Drucker-Prager criterion -- Geomaterials plasticity -- Basis of the plastic-damage model -- Mechanical behavior required for the constitutive model formulation -- Some characteristics of the plastic damage model -- Main variables of the plastic-damage model -- Definition of the plastic damage variable -- Definition of the law of evolution of cohesion c -?p -- Definition of the variable ? internal friction angle -- Variable definition ?, dilatancy angle -- Generalization of the damage model with stiffness degradation -- Introduction -- Elasto-plastic constitutive equation with stiffness degradation -- Tangent constitutive equation for stiffness degradation processes -- Particular yield functions -- Mohr-Coulomb modified function -- Drucker-Prager Modified function -- Isotropic Continuous Damage ? Introduction -- Isotropic damage model -- Helmholtz?s free energy and constitutive equation -- Damage threshold criterion -- Evolution law of the internal damage variable -- Constritutive tensor of tangent damage -- Particularization of the damage criterion -- General Softening -- Exponential softening -- Linear softening -- Particularization of the stress threshold function -- Simo -Ju. Model -- Setting of A parameter for Simo-Ju. Model -- Lemaitre and Mazars Model -- General model for different damage surfaces -- Setting of A parameter -- Time-dependent Models -- Introduction -- Constitutive equations based on spring-damping analogies -- Kelvin simplified model -- Maxwell simplified model -- Kelvin generalized model -- Kelvin multiple generalized model -- Maxwell generalized model -- Maxwell multiple generalized model -- Dissipation Evaluation -- Multiaxial generalization of the viscoelastic constitutive laws -- Multiaxial form of viscoelastic models -- Numerical solution of the integral and algorithms -- Kelvin model in dynamic problems -- Kelvin model dissipation -- Equation of the dynamic equilibrium for Kelvin model -- Stress considerations. Rayleigh vs. Kelvin model -- Dissipation considerations. Rayleigh vs. Kelvin model -- Cantilever beam -- Frame with rigid beam and lumped mass -- Viscoplasticity -- Limit states of viscoplasticity -- Over stress function -- Integration algorithm for the viscoplastic constitutive equation -- Particular case of the Duvaut-Lyon model a Von Mises viscoplastic material. 650 0$aMechanics 650 0$aVibration 650 0$aMechanical engineering 907 $a.b14247537$b29-01-16$c29-01-16 912 $a991002879119707536 945 $aLE026 620 OLL 01.01 2014$g1$i2026000069975$lle026$nProf. Zavarise / Dono$og$pE72.79$q-$rl$s- $t4$u1$v0$w1$x0$y.i15709814$z29-01-16 996 $aNonlinear Dynamics of Structures$9254737 997 $aUNISALENTO 998 $ale026$b29-01-16$cm$da $e $feng$gsp $h0$i0 LEADER 01814nam 2200517 a 450 001 9910778510403321 005 20230421033206.0 010 $a1-280-20307-2 010 $a9786610203079 010 $a0-309-56602-9 010 $a0-585-14413-3 035 $a(CKB)110986584751166 035 $a(OCoLC)44958867 035 $a(CaPaEBR)ebrary10056735 035 $a(SSID)ssj0000144086 035 $a(PQKBManifestationID)11157637 035 $a(PQKBTitleCode)TC0000144086 035 $a(PQKBWorkID)10119683 035 $a(PQKB)11477773 035 $a(MiAaPQ)EBC3376462 035 $a(Au-PeEL)EBL3376462 035 $a(CaPaEBR)ebr10056735 035 $a(OCoLC)940510266 035 $a(EXLCZ)99110986584751166 100 $a19920420d1992 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEducating mathematical scientists$b[electronic resource] $edoctoral study and the postdoctoral experience in the United States /$fCommittee on Doctoral and Postdoctoral Study in the United States, Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council 210 $aWashington, D.C. $cNational Academy Press$d1992 215 $a1 online resource (76 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-309-04690-4 320 $aIncludes bibliographical references (p. 52-53). 606 $aMathematics$xStudy and teaching (Graduate)$zUnited States 615 0$aMathematics$xStudy and teaching (Graduate) 676 $a510/.71/173 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910778510403321 996 $aEducating mathematical scientists$93864704 997 $aUNINA