LEADER 02769nam 2200637Ia 450 001 9910778338403321 005 20230721032033.0 010 $a6611733566 010 $a1-281-73356-3 010 $a9786611733568 010 $a1-60750-265-8 010 $a600-00-0512-1 010 $a1-4356-2516-1 035 $a(CKB)1000000000482520 035 $a(EBL)329923 035 $a(OCoLC)437198346 035 $a(SSID)ssj0000216608 035 $a(PQKBManifestationID)11197206 035 $a(PQKBTitleCode)TC0000216608 035 $a(PQKBWorkID)10198005 035 $a(PQKB)10381316 035 $a(MiAaPQ)EBC329923 035 $a(Au-PeEL)EBL329923 035 $a(CaPaEBR)ebr10216824 035 $a(EXLCZ)991000000000482520 100 $a20070924d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aOsteoarthritis, inflammation and degradation$b[electronic resource] $ea continuum /$fedited by Joseph A. Buckwalter, Martin Lotz and Jean-Franc?ois Stoltz 210 $aAmsterdam ;$aWashington, DC $cIOS Press$dc2007 215 $a1 online resource (316 p.) 225 1 $aBiomedical and health research,$x0929-6743 ;$vv. 70 300 $aDescription based upon print version of record. 311 $a1-58603-773-0 320 $aIncludes bibliographical references and index. 327 $aTitle page; Preface; Acknowledgments and Contributors; Contents; Extra Cellular Stimuli; Signalling Mechanisms; Effectors and Different Pathways; Imaging and Clinical Applications; Author Index 330 $aOsteoarthritis is a major public health issue due to its impact in term of handicap. Moreover, ageing of the world population and outbreak of obesity in industrialized and non-industrialized countries will dramatically increase its incidence in the next years. Regarded as a multi-factorial disease, today mechanistic and inflammatory theories are no more opposed but, on the contrary, are framed within the same continuum: osteoarthritis, inflammation and degeneration.In order to collect major information in a benchmark book on the fundamental aspects of this disease, internationally well-known a 410 0$aBiomedical and health research ;$vv. 70. 606 $aBiochemical markers 606 $aOsteoarthritis 615 0$aBiochemical markers. 615 0$aOsteoarthritis. 676 $a616.7/223007548 701 $aBuckwalter$b Joseph A$01563558 701 $aLotz$b Martin$g(Martin K.)$0731194 701 $aStoltz$b J. F$01563559 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910778338403321 996 $aOsteoarthritis, inflammation and degradation$93832058 997 $aUNINA LEADER 12123nam 22004813 450 001 9911048015903321 005 20250725080323.0 010 $a0-443-26744-8 010 $a0-443-26743-X 035 $a(CKB)39661384900041 035 $a(MiAaPQ)EBC32227739 035 $a(Au-PeEL)EBL32227739 035 $a(OCoLC)1528959780 035 $a(BIP)105938689 035 $a(EXLCZ)9939661384900041 100 $a20250725d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplications of Metal-Organic Framework Composites $eExploring the Versatility of MOFs 205 $a1st ed. 210 1$aChantilly :$cElsevier,$d2025. 210 4$dİ2025. 215 $a1 online resource (1472 pages) 327 $aFront Cover -- Applications of Metal-Organic Framework Composites -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Introduction -- Introduction -- Metal-organic frameworks -- Types of metal-organic frameworks -- Classification of metal-organic frameworks-based on connection dimensions -- 0D metal-organic frameworks -- 1D metal-organic frameworks -- 2D metal-organic frameworks -- 3D metal-organic frameworks -- Classification of metal-organic frameworks-based on inorganic subnetworks dimensions -- Classification of metal-organic frameworks-based on morphological dimensions -- One-dimensional metal-organic frameworks with 1D morphology -- Two-dimensional metal-organic frameworks with 2D morphology -- Three-dimensional metal-organic frameworks with 3D morphology -- Classification of metal-organic frameworks-based on pore size -- Microporous metal-organic frameworks -- Mesoporous metal-organic frameworks -- Macroporous metal-organic frameworks -- Structures of metal-organic frameworks -- Metal-organic frameworks structures based on configuration -- Isoreticular metal-organic frameworks -- Porous coordination networks -- Zeolitic imidazolate frameworks -- Zeolite-like metal-organic framework -- Metal-azolate frameworks -- Metal-biomolecule frameworks -- Metal-organic frameworks structures based on university names -- Materials Institute Lavoisier -- University of Oslo -- Materials from University of Tehran -- Metal-organic frameworks structure-based on metal-organic framework's network -- Properties of metal-organic frameworks -- Porosity of metal-organic frameworks -- Tunable pore size of metal-organic frameworks -- Customizable structure of metal-organic frameworks -- Flexibility of metal-organic frameworks -- Stability of metal-organic frameworks. 327 $aChemical stability of metal-organic frameworks -- Thermal stability of metal-organic frameworks -- Mechanical stability of metal-organic frameworks -- Electrochemical stability of metal-organic frameworks -- Open metal sites in metal-organic frameworks -- Chemical properties of metal-organic frameworks -- Optical properties of metal-organic frameworks -- Magnetic properties of metal-organic frameworks -- Electrical conductivity of metal-organic frameworks -- Proton conductivity of metal-organic frameworks -- Host-guest interactions of metal-organic frameworks -- Synthetic processes of metal-organic frameworks -- Hydrothermal method -- Solvothermal method -- Reflux method -- Ionothermal method -- Room temperature synthesis method -- Diffusion method -- Slow evaporation method -- Electrochemical method -- Microwave method -- Sonochemical method -- Mechanochemical method -- Microfluidics method -- Spray-drying method -- Template method -- Postsynthetic modification method -- Activation of metal-organic frameworks -- Heating activation -- Solvent-exchange activation -- Supercritical carbon dioxide activation -- Freeze-drying activation -- Microwave activation -- Photothermal activation -- Chemical activation -- Characterization of metal-organic frameworks -- X-ray diffraction -- Single-crystal X-ray diffraction -- Powder X-ray diffraction -- Physisorption isotherm -- Fourier-transform infrared spectroscopy -- Thermogravimetric analysis -- Scanning electron microscopy -- Transmission electron microscopy -- Energy dispersive X-ray spectroscopy -- Inductively coupled plasma spectroscopy -- Nuclear magnetic resonance spectroscopy -- Solid-state nuclear magnetic resonance spectroscopy -- Conclusion -- References -- 2 Metal-organic framework composites -- Emergence and properties of metal-organic frameworks. 327 $aStructural and functional regulation of metal-organic frameworks and their composites -- Structural and morphological characterization -- Surface area and porosity characterization -- Chemical and compositional analysis -- In situ polymerization -- Integrating prefabricated polymer ligands -- Grafting polymers onto metal-organic framework ligands post synthesis -- Adding preformed metal-organic frameworks to preformed polymers -- Crystallizing metal-organic frameworks around presynthesized polymers -- Metal-organic framework polymer composites for various applications -- In situ synthesis techniques -- One-pot synthesis approach -- Seeded growth method -- Layer-by-layer assembly -- Ex situ synthesis techniques -- Direct mixing and mechanical process -- Self-assembly technique -- Applications of metal-organic framework@carbon composites -- Synthesis of metal-organic framework@metal nanoparticle composites -- Solvent free gas phase loading technique -- Solid grinding technique -- Liquid impregnation method -- Template synthesis technique -- Applications of metal-organic framework@metal nanoparticle composites -- Metal-organic framework@MXene composites -- Synthesis of metal-organic framework@MXene composites -- Applications of metal-organic framework@MXene composites -- Conclusions and future prospects -- References -- 3 Metal-organic framework composites for supercapacitors -- Introduction -- Fundamental of metal-organic frameworks -- Conventional synthesis techniques for metal-organic frameworks -- Diffusion method -- Hydro/solvo thermal method -- Microwave method -- Electrochemical method -- Mechanochemical method -- Sonochemistry method -- Advanced design strategies for enhanced performance -- Pore window and pore size optimization -- Postsynthetic modification in metal-organic frameworks -- Presynthetic modification in metal-organic frameworks. 327 $aTopology of metal-organic frameworks -- Tailoring metal-organic frameworks for specific supercapacitor applications -- Design of active sites -- Interface engineering -- Pore structure -- Morphologies -- Metal-organic framework-based composite materials -- Rationale for combining metal-organic frameworks with other materials -- Types of metal-organic framework composites for supercapacitors -- Metal-organic frameworks/conductive polymer composite electrodes -- Metal-organic frameworks@polyaniline -- Metal-organic frameworks@polypyrrole -- Metal-organic frameworks@poly(3,4-ethylenedioxythiophene) -- Metal-organic framework/carbon-based material composite electrodes -- Metal-organic frameworks@carbon nanotubes composites -- Metal-organic frameworks@graphene nanocomposites -- Metal-organic frameworks/metal oxide composite electrodes -- Metal-organic framework/other material composites -- Metal-organic framework/carbon-based metal composites -- Metal-organic framework/inorganic nanoparticle composites -- Applications of metal-organic frameworks and metal-organic framework composites in supercapacitors -- Pure metal-organic framework electrodes for supercapacitors -- Metal-organic framework composites as electrode materials -- Conductive polymer composites -- Metal oxide and hydroxide composites -- Carbon based composites -- Conclusion -- References -- 4 Metal-organic framework composites for carbon capture -- Introduction -- Shaped metal-organic framework composites -- Structural metal-organic framework-monolith composites -- Amine-functionalized metal-organic framework composites -- Metal-organic framework and carbon composites -- Metal-organic framework and ionic liquid composites -- Other metal-organic framework composites -- Summary and perspective -- References -- 5 Metal-organic framework composites in fuel cells -- Introduction. 327 $aMetal-organic frameworks in fuel cells -- Metal-organic frameworks and metal-organic framework composites as precursors for electrocatalysts -- Metal-organic framework composites as electrocatalyst support materials -- Metal-organic framework composites in fuel cell electrolytes -- Functionalization of metal-organic framework composites in fuel cell electrolytes -- Conclusion and future work -- References -- 6 Metal-organic framework composites for solar cells -- Introduction -- Photovoltaic technology -- Fundamentals of photovoltaic -- Metal-organic framework composites -- Synthesis of metal-organic framework composites -- Application of metal-organic framework composites in photovoltatic devices -- Metal-organic framework composites as working electrodes -- Metal-organic framework composites as working electrode -- Metal-organic framework composites as counter electrodes -- Metal-organic framework composites as sensitizer dyes -- Metal-organic framework composites in redox elelctrolytes -- Metal-organic framework composites in perovskite solar cells -- Metal-organic framework composites as/in perovskite layer -- Metal-organic framework composites in the electron transport layer -- Metal-organic framework composites in the hole transport layer -- Metal-organic framework composites as the interface layer -- Metal-organic framework composites in organic solar cells -- Conclusion -- Acknowledgment -- References -- 7 Metal-organic framework composites for electromagnetic interference shielding -- Introduction -- Metal-organic frameworks, their composites, and their shielding mechanisms -- Metal-organic framework shielding composites -- Metal-organic framework composites with intrinsically conductive polymers -- Metal-organic frameworks composites with MXenes -- Metal-organic framework-based carbonaceous composites. 327 $aPorous metal-organic framework-based shielding constructs. 330 $aApplications of Metal-Organic Framework Composites: Exploring the Versatility of MOFs systematically describes the state-of-the-art knowledge and fundamentals of metal-organic frameworks' synthesis, structure, and functionalization. The book discusses the unique mechanical, optical, magnetic, ferroelectric, and electronic behaviors of metal-organic frameworks, covering various emerging applications across different fields, including environmental pollutant removal, biomedical applications, water desalination, packaging, supercapacitor and energy storage, EMI shielding, catalysis, gas separation, chemical sensing, fire retardancy, water splitting, antibacterial applications, and battery technology.All applications have been efficiently discussed in specific chapters, and in each case, the processing of metal-organic frameworks composites has also been addressed. The book enables readers to keep up with the latest advancements in the field and provides an overview of the current state-of-the-art research.- Covers the synthesis, characterization, and functionalization of metal-organic framework composites, featuring detailed experimental protocols and examples- Promotes a critical assessment of the challenges and limitations associated with metal-organic framework composites, as well as strategies for addressing these issues and optimizing their performance- Offers guidance on the most promising directions for future research and development, as well as practical information on the processing of metal-organic framework composites for various applications 676 $a620.116 700 $aNabipour$b Hafezeh$01879494 701 $aRohani$b Sohrab$0996162 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911048015903321 996 $aApplications of Metal-Organic Framework Composites$94492728 997 $aUNINA