LEADER 06282nam 2201861 a 450 001 9910778222903321 005 20200520144314.0 010 $a1-282-15774-4 010 $a9786612157745 010 $a1-4008-2780-9 024 7 $a10.1515/9781400827800 035 $a(CKB)1000000000788440 035 $a(EBL)457845 035 $a(OCoLC)438732324 035 $a(SSID)ssj0000190877 035 $a(PQKBManifestationID)11937129 035 $a(PQKBTitleCode)TC0000190877 035 $a(PQKBWorkID)10181037 035 $a(PQKB)10884987 035 $a(DE-B1597)446562 035 $a(OCoLC)979581490 035 $a(DE-B1597)9781400827800 035 $a(Au-PeEL)EBL457845 035 $a(CaPaEBR)ebr10312431 035 $a(CaONFJC)MIL215774 035 $a(MiAaPQ)EBC457845 035 $a(PPN)170237761 035 $a(EXLCZ)991000000000788440 100 $a20060803d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLectures on resolution of singularities$b[electronic resource] /$fJa?nos Kolla?r 205 $aCourse Book 210 $aPrinceton, N.J. $cPrinceton University Press$d2007 215 $a1 online resource (215 p.) 225 1 $aAnnals of mathematics studies ;$v166 300 $aDescription based upon print version of record. 311 $a0-691-12922-3 311 $a0-691-12923-1 320 $aIncludes bibliographical references (p. 197-202) and index. 327 $t Frontmatter -- $tContents -- $tIntroduction -- $tChapter 1. Resolution for Curves -- $tChapter 2. Resolution for Surfaces -- $tChapter 3. Strong Resolution in Characteristic Zero -- $tBibliography -- $tIndex 330 $aResolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem. 410 0$aAnnals of mathematics studies ;$vno. 166. 606 $aSingularities (Mathematics) 610 $aAdjunction formula. 610 $aAlgebraic closure. 610 $aAlgebraic geometry. 610 $aAlgebraic space. 610 $aAlgebraic surface. 610 $aAlgebraic variety. 610 $aApproximation. 610 $aAsymptotic analysis. 610 $aAutomorphism. 610 $aBernhard Riemann. 610 $aBig O notation. 610 $aBirational geometry. 610 $aC0. 610 $aCanonical singularity. 610 $aCodimension. 610 $aCohomology. 610 $aCommutative algebra. 610 $aComplex analysis. 610 $aComplex manifold. 610 $aComputability. 610 $aContinuous function. 610 $aCoordinate system. 610 $aDiagram (category theory). 610 $aDifferential geometry of surfaces. 610 $aDimension. 610 $aDivisor. 610 $aDu Val singularity. 610 $aDual graph. 610 $aEmbedding. 610 $aEquation. 610 $aEquivalence relation. 610 $aEuclidean algorithm. 610 $aFactorization. 610 $aFunctor. 610 $aGeneral position. 610 $aGeneric point. 610 $aGeometric genus. 610 $aGeometry. 610 $aHyperplane. 610 $aHypersurface. 610 $aIntegral domain. 610 $aIntersection (set theory). 610 $aIntersection number (graph theory). 610 $aIntersection theory. 610 $aIrreducible component. 610 $aIsolated singularity. 610 $aLaurent series. 610 $aLine bundle. 610 $aLinear space (geometry). 610 $aLinear subspace. 610 $aMathematical induction. 610 $aMathematics. 610 $aMaximal ideal. 610 $aMorphism. 610 $aNewton polygon. 610 $aNoetherian ring. 610 $aNoetherian. 610 $aOpen problem. 610 $aOpen set. 610 $aP-adic number. 610 $aPairwise. 610 $aParametric equation. 610 $aPartial derivative. 610 $aPlane curve. 610 $aPolynomial. 610 $aPower series. 610 $aPrincipal ideal. 610 $aPrincipalization (algebra). 610 $aProjective space. 610 $aProjective variety. 610 $aProper morphism. 610 $aPuiseux series. 610 $aQuasi-projective variety. 610 $aRational function. 610 $aRegular local ring. 610 $aResolution of singularities. 610 $aRiemann surface. 610 $aRing theory. 610 $aRuler. 610 $aScientific notation. 610 $aSheaf (mathematics). 610 $aSingularity theory. 610 $aSmooth morphism. 610 $aSmoothness. 610 $aSpecial case. 610 $aSubring. 610 $aSummation. 610 $aSurjective function. 610 $aTangent cone. 610 $aTangent space. 610 $aTangent. 610 $aTaylor series. 610 $aTheorem. 610 $aTopology. 610 $aToric variety. 610 $aTransversal (geometry). 610 $aVariable (mathematics). 610 $aWeierstrass preparation theorem. 610 $aWeierstrass theorem. 610 $aZero set. 615 0$aSingularities (Mathematics) 676 $a516.3/5 686 $aSK 240$2rvk 700 $aKolla?r$b Ja?nos$065993 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910778222903321 996 $aLectures on resolution of singularities$9731847 997 $aUNINA